28 research outputs found

    Study and development of a novel radio frequency electromedical device for the treatment of peri-implantitis: experimental performance analysis, modelling of the electromagnetic interaction with tissues and in vitro and in vivo evaluation

    Get PDF
    La peri-implantite (PI) è una grave patologia che interessa tessuti peri-implantari molli e duri. Ad oggi, la prevenzione è l’unico mezzo per contrastarla. Recentemente, è stata sperimentata una terapia basata sulla somministrazione di corrente elettrica a radio frequenza (successo: 81%). Il trattamento è stato simulato numericamente, fornendo le distribuzioni di corrente (EC) e campo elettrico (EF) nei tessuti: l’effetto anti-infiammatorio è attribuibile alla EC, quello di rigenerazione ossea al EF. Sono state considerate le misure di bioimpedenza (BM) per individuare le infiammazioni; numericamente si sono osservati cambiamenti nel modulo di impedenza del 4-20% (secondo diversi parametri), anche più alti sperimentalmente (35% infiammazione, 56% PI). Le BM permettono quindi di identificare il tessuto da trattare. Per la ripetibilità, sono state considerate radici di denti naturali, numericamente e sperimentalmente; l’ordine di grandezza è lo stesso (qualche kΩ), anche se ci sono differenze legate alle condizioni di misura. La variabilità intra-soggetto è il 10% in uno stesso giorno, fino al 26% in giorni diversi; quella inter-soggetto è più alta. La sicurezza elettrica è stata attentamente esaminata e si sono individuate le direttive applicabili (IEC 60601-1, 60601-1-2 and 60601-2-2). Sono stati fatti test in vitro per valutare l’effetto della terapia sulla vitalità cellulare: non c’è un significativo aumento della necrosi (vitalità: 85% test, 94% controlli), l’effetto negativo principale è l’apoptosi. Sono stati numericamente indagati possibili effetti termici: non sono stati individuati riscaldamenti nocivi dei tessuti. Si è progettato un nuovo dispositivo (PeriCare®) per trattare la PI, con parti diagnostica (BM) e terapeutica. Si stanno progettando elettrodi specifici e realizzando il prototipo. Si sta compilando il fascicolo tecnico e pianificando i test di conformità, in vista della certificazione. Il dispositivo medico dovrebbe entrare nel mercato entro l’anno.Peri-implantitis is a severe disease affecting hard and soft peri-implant tissues. At present, prevention is the only means to contrast it. Recently, a therapy based on the administration of radio frequency electric current was experimented (success rate: 81%). The treatment was numerically simulated, providing the electric current (EC) and field (EF) distributions in peri-implant tissues: the anti-inflammatory effect can be associated to EC, the bone regeneration to the EF. Bioimpedance measurements (BM) were investigated to detect inflammation; changes in the measured impedance modulus are equal to 4-20% (depending on different parameters) from numerical results, also more evident experimentally (35% inflammation, 56% peri-implantitis). So, BM could allow to detect the tissue to be treated. To evaluate the repeatability, natural tooth roots were numerically and experimentally measured; the order of magnitude is the same (some kΩ), even if there are differences probably due to the measurement conditions. Intra-subject variability was of 10% in the same day, but up to 26% in different days; inter-subject variability was higher. The electrical safety was accurately taken into account. The applicable directives were individuated (IEC 60601-1, 60601-1-2 and 60601-2-2). In vitro tests were carried out to evaluate the effect of the therapy on cell vitality: there is not a significant increase in necrosis (vitality: 85% tests, 94% controls), the main negative effect is apoptosis. Possible thermal effects were numerically investigated: no dangerous tissue heating was observed. A new device for the peri-implantitis treatment, PeriCare®, was designed, with diagnostic (BM) and therapeutic parts. Proper electrodes are being designed and the prototype is being realized. The technical file is being compiled and the conformity verification tests are being planned towards the certification process. Hopefully, the medical device will be placed into the market within this year

    Accuracy and Precision of Wearable Devices for Real-Time Monitoring of Swimming Athletes

    Get PDF
    none4noNowadays, the use of wearable devices is spreading in different fields of application, such as healthcare, digital health, and sports monitoring. In sport applications, the present trend is to continuously monitor the athletes’ physiological parameters during training or competitions to maximize performance and support coaches. This paper aims to evaluate the performances in heart rate assessment, in terms of accuracy and precision, of both wrist-worn and chest-strap commercial devices used during swimming activity, considering a test population of 10 expert swimmers. Three devices were employed: Polar H10 cardiac belt, Polar Vantage V2, and Garmin Venu Sq smartwatches. The former was used as a reference device to validate the data measured by the two smartwatches. Tests were performed both in dry and wet conditions, considering walking/running on a treadmill and different swimming styles in water, respectively. The measurement accuracy and precision were evaluated through standard methods, i.e., Bland–Altman plot, analysis of deviations, and Pearson’s correlation coefficient. Results show that both precision and accuracy worsen during swimming activity (with an absolute increase of the measurement deviation in the range of 13–56 bpm for mean value and 49–52 bpm for standard deviation), proving how water and arms movement act as relevant interference inputs. Moreover, it was found that wearable performance decreases when activity intensity increases, highlighting the need for specific research for wearable applications in water, with a particular focus on swimming-related sports activitiesCosoli, Gloria; Antognoli, Luca; Veroli, Valentina; Scalise, LorenzoCosoli, Gloria; Antognoli, Luca; Veroli, Valentina; Scalise, Lorenz

    Development of a Novel Medical Device for Mucositis and Peri-Implantitis Treatment

    Get PDF
    In spite of all the developments in dental implantology techniques, peri-implant diseases are frequent (prevalence up to 80% and 56% of subjects for mucositis and peri-implantitis, respectively) and there is an urgency for an effective treatment strategy. This paper presents an innovative electromedical device for the electromagnetic treatment of mucositis and peri-implantitis diseases. This device is also equipped with a measurement part for bioimpedance, which reflects the health conditions of a tissue, thus allowing clinicians to objectively detect impaired areas and to monitor the severity of the disease, evaluate the treatment efficacy, and adjust it accordingly. The design of the device was realized considering literature data, clinical evidence, numerical simulation results, and electromagnetic compatibility (EMC) pre-compliance tests, involving both clinicians and engineers, to better understand all the needs and translate them into design requirements. The reported system is being tested in more than 50 dental offices since 2019, providing efficient treatments for mucositis and peri-implantitis, with success rates of approximately 98% and 80%, respectively

    Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review

    No full text
    This paper aims at analyzing the state-of-the-art techniques to measure electrical impedance (and, consequently, electrical resistivity) of mortar/concrete elements. Despite the validity of the concept being widely proven in the literature, a clear standard for this measurement is still missing. Different methods are described and discussed, highlighting pros and cons with respect to their performance, reliability, and degree of maturity. Both monitoring and inspection approaches are possible by using electrical resistivity measurements; since electrical resistivity is an important indicator of the health status of mortar/concrete, as it changes whenever phenomena modifying the conductivity of mortar/concrete (e.g., degradation or attacks by external agents) occur, this review aims to serve as a guide for those interested in this type of measurements

    Study and development of a novel radio frequency electromedical device for the treatment of peri-implantitis: experimental performance analysis, modelling of the electromagnetic interaction with tissues and in vitro and in vivo evaluation

    No full text
    La peri-implantite (PI) è una grave patologia che interessa tessuti peri-implantari molli e duri. Ad oggi, la prevenzione è l’unico mezzo per contrastarla. Recentemente, è stata sperimentata una terapia basata sulla somministrazione di corrente elettrica a radio frequenza (successo: 81%). Il trattamento è stato simulato numericamente, fornendo le distribuzioni di corrente (EC) e campo elettrico (EF) nei tessuti: l’effetto anti-infiammatorio è attribuibile alla EC, quello di rigenerazione ossea al EF. Sono state considerate le misure di bioimpedenza (BM) per individuare le infiammazioni; numericamente si sono osservati cambiamenti nel modulo di impedenza del 4-20% (secondo diversi parametri), anche più alti sperimentalmente (35% infiammazione, 56% PI). Le BM permettono quindi di identificare il tessuto da trattare. Per la ripetibilità, sono state considerate radici di denti naturali, numericamente e sperimentalmente; l’ordine di grandezza è lo stesso (qualche kΩ), anche se ci sono differenze legate alle condizioni di misura. La variabilità intra-soggetto è il 10% in uno stesso giorno, fino al 26% in giorni diversi; quella inter-soggetto è più alta. La sicurezza elettrica è stata attentamente esaminata e si sono individuate le direttive applicabili (IEC 60601-1, 60601-1-2 and 60601-2-2). Sono stati fatti test in vitro per valutare l’effetto della terapia sulla vitalità cellulare: non c’è un significativo aumento della necrosi (vitalità: 85% test, 94% controlli), l’effetto negativo principale è l’apoptosi. Sono stati numericamente indagati possibili effetti termici: non sono stati individuati riscaldamenti nocivi dei tessuti. Si è progettato un nuovo dispositivo (PeriCare®) per trattare la PI, con parti diagnostica (BM) e terapeutica. Si stanno progettando elettrodi specifici e realizzando il prototipo. Si sta compilando il fascicolo tecnico e pianificando i test di conformità, in vista della certificazione. Il dispositivo medico dovrebbe entrare nel mercato entro l’anno.Peri-implantitis is a severe disease affecting hard and soft peri-implant tissues. At present, prevention is the only means to contrast it. Recently, a therapy based on the administration of radio frequency electric current was experimented (success rate: 81%). The treatment was numerically simulated, providing the electric current (EC) and field (EF) distributions in peri-implant tissues: the anti-inflammatory effect can be associated to EC, the bone regeneration to the EF. Bioimpedance measurements (BM) were investigated to detect inflammation; changes in the measured impedance modulus are equal to 4-20% (depending on different parameters) from numerical results, also more evident experimentally (35% inflammation, 56% peri-implantitis). So, BM could allow to detect the tissue to be treated. To evaluate the repeatability, natural tooth roots were numerically and experimentally measured; the order of magnitude is the same (some kΩ), even if there are differences probably due to the measurement conditions. Intra-subject variability was of 10% in the same day, but up to 26% in different days; inter-subject variability was higher. The electrical safety was accurately taken into account. The applicable directives were individuated (IEC 60601-1, 60601-1-2 and 60601-2-2). In vitro tests were carried out to evaluate the effect of the therapy on cell vitality: there is not a significant increase in necrosis (vitality: 85% tests, 94% controls), the main negative effect is apoptosis. Possible thermal effects were numerically investigated: no dangerous tissue heating was observed. A new device for the peri-implantitis treatment, PeriCare®, was designed, with diagnostic (BM) and therapeutic parts. Proper electrodes are being designed and the prototype is being realized. The technical file is being compiled and the conformity verification tests are being planned towards the certification process. Hopefully, the medical device will be placed into the market within this year

    Wearable Electrocardiography for Physical Activity Monitoring: Definition of Validation Protocol and Automatic Classification

    No full text
    Wearable devices are rapidly spreading thanks to multiple advantages. Their use is expanding in several fields, from medicine to personal assessment and sport applications. At present, more and more wearable devices acquire an electrocardiographic (ECG) signal (in correspondence to the wrist), providing potentially useful information from a diagnostic point of view, particularly in sport medicine and in rehabilitation fields. They are remarkably relevant, being perceived as a common watch and, hence, considered neither intrusive nor a cause of the so-called "white coat effect". Their validation and metrological characterization are fundamental; hence, this work aims at defining a validation protocol tested on a commercial smartwatch (Samsung Galaxy Watch3, Samsung Electronics Italia S.p.A., Milan, Italy) with respect to a gold standard device (Zephyr BioHarness 3.0, Zephyr Technology Corporation, Annapolis, MD, USA, accuracy of +/- 1 bpm), reporting results on 30 subjects. The metrological performance is provided, supporting final users to properly interpret the results. Moreover, machine learning and deep learning models are used to discriminate between resting and activity-related ECG signals. The results confirm the possibility of using heart rate data from wearable sensors for activity identification (best results obtained by Random Forest, with accuracy of 0.81, recall of 0.80, and precision of 0.81, even using ECG signals of limited duration, i.e., 30 s). Moreover, the effectiveness of the proposed validation protocol to evaluate measurement accuracy and precision in a wide measurement range is verified. A bias of -1 bpm and an experimental standard deviation of 11 bpm (corresponding to an experimental standard deviation of the mean of approximate to 0 bpm) were found for the Samsung Galaxy Watch3, indicating a good performance from a metrological point of view

    Wrist-worn and chest-strap wearable devices: Systematic review on accuracy and metrological characteristics

    No full text
    This paper analyses the state of the art on accuracy and metrological characteristics of wrist-worn and chest-strap wearable devices, in comparison with reference instruments. Basing on literature available results, neither a standard protocol for validation nor fixed metrological characteristics can be identified. Wearable devices are validated without standard procedures (test protocol, population characteristics and metrological parameters), which turns into irregular results, barely comparable each other. Therefore, it would be extremely interesting to conduct a pilot study to identify standard characteristics to evaluate accuracy, compliant to the guidelines for the expression of uncertainty in measurement and recognized by organizations promoting public health (e.g. the Food and Drug Administration in the United States). This way, it would be possible to start establishing a database of wearable devices’ metrological properties, useful not only for research, but also for caregivers and sportsmen, in different application fields (e.g. sport, medicine, Active and Assisted Living, etc.)

    Wireless ECG and cardiac monitoring systems: State of the art, available commercial devices and useful electronic components

    No full text
    Wireless ElectroCardioGram (ECG) systems are employed in manifold application fields: tele-monitoring, sport applications, support to ageing people at home, fetal ECG, wearable devices and ambulatory monitoring. The presence of cables often hinders user’s free movements, alongside clinicians’ routine operations. Therefore, wireless ECG systems are desirable. This paper aims at reviewing the solutions described in the literature, besides commercially available devices and electronic components useful to setup laboratory prototypes. Several systems have been developed, different in terms of the adopted technology; when approaching the development of a wireless ECG system, some important aspects should be considered: electrodes (disposable, wet/dry, without contact, insulated), analog front-end, data acquisition systems (including amplifiers, multiplexer), wireless transmission technology (e.g. WiFi, Bluetooth) and power consumption (battery lifetime, miniaturization purposes). Technological advancements and continuous research have already brought to miniaturized and comfortable devices, but there is still room for improvement on multiple sides
    corecore