225 research outputs found

    Effects of nanomaterials on marine invertebrates

    Get PDF
    The development of nanotechnology will inevitably lead to the release of consistent amounts of nanomaterials (NMs) and nanoparticles (NPs) into marine ecosystems. Ecotoxicological studies have been carried out to identify potential biological targets of NPs, and suitable models for predicting their impact on the health of the marine environment. Recent studies in invertebrates mainly focused on NP accumulation and sub-lethal effects, rather than acute toxicity. Among marine invertebrates, bivalves represent by large the most studied group, with polychaetes and echinoderms also emerging as significant targets of NPs. However, major scientific gaps still need to be filled. In this work, factors affecting the fate of NPs in the marine environment, and their consequent uptake/accumulation/toxicity in marine invertebrates will be summarized. The results show that in different model species, NP accumulation mainly occurs in digestive tract and gills. Data on sub-lethal effects and modes of action of different types of NPs (mainly metal oxides and metal based NPs) in marine invertebrates will be reviewed, in particular on immune function, oxidative stress and embryo development. Moreover, the possibility that such effects may be influenced by NP interactions with biomolecules in both external and internal environment will be introduced. In natural environmental media, NP interactions with polysaccharides, proteins and colloids may affect their agglomeration/aggregation and consequent bioavailability. Moreover, once within the organism, NPs are known to interact with plasma proteins, forming a protein corona that can affect particle uptake and toxicity in target cells in a physiological environment. These interactions, leading to the formation of eco-bio-coronas, may be crucial in determining particle behavior and effects also in marine biota. In order to classify NPs into groups and predict the implications of their release into the marine environment, information on their intrinsic properties is clearly insufficient, and a deeper understanding of NP eco/bio-interactions is required

    Behavior and Bio-Interactions of Anthropogenic Particles in Marine Environment for a More Realistic Ecological Risk Assessment

    Get PDF
    Owing to production, usage, and disposal of nano-enabled products as well as fragmentation of bulk materials, anthropogenic nanoscale particles (NPs) can enter the natural environment and through different compartments (air, soil, and water) end up into the sea. With the continuous increase in production and associated emissions and discharges, they can reach concentrations able to exceed toxicity thresholds for living species inhabiting marine coastal areas. Behavior and fate of NPs in marine waters are driven by transformation processes occurring as a function of NP intrinsic and extrinsic properties in the receiving seawaters. All those aspects have been overlooked in ecological risk assessment. This review critically reports ecotoxicity studies in which size distribution, surface charges and bio−nano interactions have been considered for a more realistic risk assessment of NPs in marine environment. Two emerging and relevant NPs, the metal-based titanium dioxide (TiO2), and polystyrene (PS), a proxy for nanoplastics, are reviewed, and their impact on marine biota (from planktonic species to invertebrates and fish) is discussed as a function of particle size and surface charges (negative vs. positive), which affect their behavior and interaction with the biological material. Uptake of NPs is related to their nanoscale size; however, in vivo studies clearly demonstrated that transformation (agglomerates/aggregates) occurring in both artificial and natural seawater drive to different exposure routes and biological responses at cellular and organism level. Adsorption of single particles or agglomerates onto the body surface or their internalization in feces can impair motility and affect sinking or floating behavior with consequences on populations and ecological function. Particle complex dynamics in natural seawater is almost unknown, although it determines the effective exposure scenarios. Based on the latest predicted environmental concentrations for TiO2 and PS NPs in the marine environment, current knowledge gaps and future research challenges encompass the comprehensive study of bio−nano interactions. As such, the analysis of NP biomolecular coronas can enable a better assessment of particle uptake and related cellular pathways leading to toxic effects. Moreover, the formation of an environmentally derived corona (i.e., eco-corona) in seawater accounts for NP physical–chemical alterations, rebounding on interaction with living organisms and toxicity

    Unraveling cellular and molecular mechanisms of acid stress tolerance and resistance in marine species: New frontiers in the study of adaptation to ocean acidification

    Get PDF
    Since the industrial revolution, fossil fuel combustion has led to a 30 %-increase of the atmospheric CO2 con- centration, also increasing the ocean partial CO2 pressure. The consequent lowered surface seawater pH is termed ocean acidification (OA) and severely affects marine life on a global scale. Cellular and molecular re- sponses of marine species to lowered seawater pH have been studied but information on the mechanisms driving the tolerance of adapted species to comparatively low seawater pH is limited. Such information may be obtained from species inhabiting sites with naturally low water pH that have evolved remarkable abilities to tolerate such conditions. This review gathers information on current knowledge about species naturally facing low water pH conditions and on cellular and molecular adaptive mechanisms enabling the species to survive under, and even benefit from, adverse pH conditions. Evidences derived from case studies on naturally acidified systems and on resistance mechanisms will guide predictions on the consequences of future adverse OA scenarios for marine biodiversity

    Short-Term Exposure to Nanoplastics Does Not Affect Bisphenol A Embryotoxicity to Marine Ascidian Ciona robusta

    Get PDF
    Plastic pollution is recognized as a global environmental threat and concern is increasing regarding the potential interactions of the smallest fragments, nanoplastics (1 m), with either physical and chemical entities encountered in the natural environment, including toxic pollutants. The smallest size of nanoplastics (<100 nm) rebounds to their safety associated with remarkable biological, chemical and physical reactivity that allow them to interact with cellular machinery by crossing biological barriers and causing damage to living beings. Recent findings on nanoplastic occurrence inmarine coastal waters, including the Mediterranean Sea, leave open the question on their ability to act as a vector of other contaminants of emerging concerns (CECs) concomitantly released by wastewater treatment plants and reaching marine coastal waters. Here, we assess for the first time the role of non-functionalized polystyrene nanoparticles (PS NPs, 20 nm) as a proxy for nanoplastics (1 and 10 g/mL) alone and in combinationwith bisphenolA(BPA) (4.5 and 10 m) on Ciona robusta embryos (22 h post fertilization, hpf) by looking at embryotoxicity through phenotypic alterations. We confirmed the ability of BPA to impact ascidian C. robusta embryo development, by affecting sensory organs pigmentation, either alone and in combination with PS NPs. Our findings suggest that no interactions are taking place between PS NPs and BPA in filtered sea water (FSW) probably due to the high ionic strength of seawater able to trigger the sorption surface properties of PS NPs. Further studies are needed to elucidate such peculiarities and define the risk posed by combined exposure to BPA and PS NPs in marine coastal waters

    Proteomics coupled with AhR-reporter gene bioassay for human and environmental safety assessment of sewage sludge and hydrochar

    Get PDF
    Today application of sewage sludge (SL) and hydrochar (HC) in agriculture is a common practice for soil conditioning and crop fertilization, however safety concerns for human and environmental health due to the presence of toxic compounds have recently been expressed. Our aim was to test the suitability of proteomics coupled with bioanalytical tools for unravelling mixture effects of these applications in human and environmental safety assessment. We conducted proteomic and bioinformatic analysis of cell cultures used in the DR-CALUX® bioassay to identify proteins differentially abundant after exposure to SL and the corresponding HC, rather than only using the Bioanalytical Toxicity Equivalents (BEQs) obtained by DR-CALUX®. DR-CALUX® cells exposed to SL or HC showed a differential pattern of protein abundance depending on the type of SL and HC extract. The modified proteins are involved in antioxidant pathways, unfolded protein response and DNA damage that have close correlations with the effects of dioxin on biological systems and with onset of cancer and neurological disorders. Other cell response evidence suggested enrichment of heavy metals in the extracts. The present combined approach represents an advance in the application of bioanalytical tools for safety assessment of complex mixtures such as SL and HC. It proved successful in screening proteins, the abundance of which is determined by SL and HC and by the biological activity of legacy toxic compounds, including organohalogens

    Recensioni

    Get PDF
    1. RecensioneAnnalisa Morganti, Intelligenza emotiva e integrazione scolastica, Carocci, Roma, 2012, pp. 163 di Gianluca Amatori;2. RecensioneBruna Mazzoncini, Lucilla Musatti, I disturbi dello sviluppo. Bambini, genitori e insegnanti, Raffaello Cortina, Milano, 2012, pp. 251di Fabio Bocci e Ilaria Quaglieri;3. RecensioneDaniele Fedeli, Il disturbo da deficit d’attenzione e iperattività, Carocci, Roma, 2012, pp. 207 di Francesca Maria Corsi;4. RecensioneFrancesco Susi, Educare senza escludere. Studi e ricerche sulla formazione, Armando, Roma, 2012, pp. 176 di Fabio Bocc
    • …
    corecore