13,905 research outputs found

    HD60532, a planetary system in a 3:1 mean motion resonance

    Full text link
    In a recent paper it was reported a planetary system around the star HD60532, composed by two giant planets in a possible 3:1 mean motion resonance, that should be confirmed within the next decade. Here we show that the analysis of the global dynamics of the system allows to confirm this resonance. The present best fit to data already corresponds to this resonant configuration and the system is stable for at least 5Gry. The 3:1 resonance is so robust that stability is still possible for a wide variety of orbital parameters around the best fit solution and also if the inclination of the system orbital plane with respect to the plane of the sky is as small as 15 deg. Moreover, if the inclination is taken as a free parameter in the adjustment to the observations, we find an inclination ~ 20 deg, which corresponds to M_b =3.1 M_Jup and M_c = 7.4 M_Jup for the planetary companions.Comment: 4 Pages, 4 Figures, accepted by A&

    On the equilibrium rotation of Earth-like extra-solar planets

    Full text link
    The equilibrium rotation of tidally evolved "Earth-like" extra-solar planets is often assumed to be synchronous with their orbital mean motion. The same assumption persisted for Mercury and Venus until radar observations revealed their true spin rates. As many of these planets follow eccentric orbits and are believed to host dense atmospheres, we expect the equilibrium rotation to differ from the synchronous motion. Here we provide a general description of the allowed final equilibrium rotation states of these planets, and apply this to already discovered cases in which the mass is lower than twelve Earth-masses. At low obliquity and moderate eccentricity, it is shown that there are at most four distinct equilibrium possibilities, one of which can be retrograde. Because most presently known "Earth-like" planets present eccentric orbits, their equilibrium rotation is unlikely to be synchronous.Comment: 4 pages, 2 figures. accepted for publication in Astronomy and Astrophysics. to be published in Astronomy and Astrophysic

    Resonance breaking due to dissipation in planar planetary systems

    Full text link
    We study the evolution of two planets around a star, in mean-motion resonance and undergoing tidal effect. We derive an integrable analytical model of mean-motion resonances of any order which reproduce the main features of the resonant dynamics. Using this simplified model, we obtain a criterion showing that depending on the balance of the tidal dissipation in both planets, their final period ratio may stay at the resonant value, increase above, or decrease below the resonant value. Applying this criterion to the two inner planets orbiting GJ163, we deduce that the current period ratio (2.97) could be the outcome of dissipation in the 3:1 MMR provided that the innermost planet is gaseous (slow dissipation) while the second one is rocky (faster dissipation). We perform N-body simulations with tidal dissipation to confirm the results of our analytical model. We also apply our criterion on GJ581b, c (5:2 MMR) and reproduce the current period ratio (2.4) if the inner planet is gaseous and the outer is rocky (as for GJ163). Finally, we apply our model to the Kepler mission's statistics. We show that the excess of planets pairs close to first order MMR but in external circulation, i.e., with period ratios P_out/P_in > (p+1)/p for the resonance (p+1):p, can be reproduced by tidal dissipation in the inner planet. There is no need for any other dissipative mechanism, provided that these systems left the resonance with non-negligible eccentricities.Comment: 14 pages, 9 figures, submitted for publicatio

    Resource design in constrained networks for network lifetime increase

    Get PDF
    As constrained "things" become increasingly integrated with the Internet and accessible for interactive communication, energy efficient ways to collect, aggregate, and share data over such constrained networks are needed. In this paper, we propose the use of constrained RESTful environments interfaces to build resource collections having a network lifetime increase in mind. More specifically, based on existing atomic resources, collections are created/designed to become available as new resources, which can be observed. Such resource design should not only match client's interests, but also increase network lifetime as much as possible. For this to happen, energy consumption should be balanced/fair among nodes so that node depletion is delayed. When compared with previous approaches, results show that energy efficiency and network lifetime can be increased while reducing control/registration messages, which are used to set up or change observations

    Dynamical stability analysis of the HD202206 system and constraints to the planetary orbits

    Full text link
    Long-term precise Doppler measurements with the CORALIE spectrograph revealed the presence of two massive companions to the solar-type star HD202206. Although the three-body fit of the system is unstable, it was shown that a 5:1 mean motion resonance exists close to the best fit, where the system is stable. We present here an extensive dynamical study of the HD202206 system aiming at constraining the inclinations of the two known companions, from which we derive possible ranges of value for the companion masses. We study the long term stability of the system in a small neighborhood of the best fit using Laskar's frequency map analysis. We also introduce a numerical method based on frequency analysis to determine the center of libration mode inside a mean motion resonance. We find that acceptable coplanar configurations are limited to inclinations to the line of sight between 30 and 90 degrees. This limits the masses of both companions to roughly twice the minimum. Non coplanar configurations are possible for a wide range of mutual inclinations from 0 to 90 degrees, although ΔΩ=0[π]\Delta\Omega = 0 [\pi] configurations seem to be favored. We also confirm the 5:1 mean motion resonance to be most likely. In the coplanar edge-on case, we provide a very good stable solution in the resonance, whose χ2\chi^2 does not differ significantly from the best fit. Using our method to determine the center of libration, we further refine this solution to obtain an orbit with a very low amplitude of libration, as we expect dissipative effects to have dampened the libration.Comment: 14 pages, 18 figure

    Effect of the curing time on the numerical modelling of the behaviour of a chemically stabilised soft soil

    Get PDF
    The ability of the Modified Cam Clay (MCC) model combined with the Von Mises (VM) model, considering the effect of curing time on the enhancement of the mechanical properties of a chemically stabilised soft soil is examined. The evolution of the strength and stiffness over time is based on the results of undrained compressive strength (UCS) tests carried out for different curing times (from 28 days to 360 days). Initially, the MCC/VM models associated with the effect of curing time are validated by CIU triaxial tests, for curing times of 28 and 90 days. Finally, the behaviour of an embankment built on a soft soil reinforced with deep mixing columns is predicted based on the previously validated models. The results show that the increase of curing time of the DMCs slightly decreases the settlement obtained with a curing time of 28 days

    The MSSM from Scherk-Schwarz Supersymmetry Breaking

    Get PDF
    We present a five-dimensional model compactified on an interval where supersymmetry is broken by the Scherk-Schwarz mechanism. The gauge sector propagates in the bulk, two Higgs hypermultiplets are quasilocalized, and quark and lepton multiplets localized, in one of the boundaries. The effective four-dimensional theory is the MSSM with very heavy gauginos, heavy squarks and light sleptons and Higgsinos. The soft tree-level squared masses of the Higgs sector can be negative and they can (partially) cancel the positive one-loop contributions from the gauge sector. Electroweak symmetry breaking can then comfortably be triggered by two-loop radiative corrections from the top-stop sector. The fine tuning required to obtain the electroweak scale is found to be much smaller than in the MSSM, with essentially no fine-tuning for few TeV gaugino masses. All bounds from direct Higgs searches at LEP and from electroweak precision observables can be satisfied. The lightest supersymmetric particle is a (Higgsino-like) neutralino that can accomodate the abundance of Dark Matter consistently with recent WMAP observations.Comment: 23 pages, 3 figure
    • …
    corecore