2,192 research outputs found

    Controlling charge injection in organic field-effect transistors using self-assembled monolayers

    Get PDF
    We have studied charge injection across the metal/organic semiconductor interface in bottom-contact poly(3-hexylthiophene) (P3HT) field-effect transistors, with Au source and drain electrodes modified by self-assembled monolayers (SAMs) prior to active polymer deposition. By using the SAM to engineer the effective Au work function, we markedly affect the charge injection process. We systematically examine the contact resistivity and intrinsic channel mobility, and show that chemically increasing the injecting electrode work function significantly improves hole injection relative to untreated Au electrodes.Comment: 5 pages, 2 figures. Supplementary information available upon reques

    Collapse of Kaluza-Klein Bubbles

    Full text link
    Kaluza-Klein theory admits ``bubble" configurations, in which the circumference of the fifth dimension shrinks to zero on some compact surface. A three parameter family of such bubble initial data at a moment of time-symmetry (some including a magnetic field) has been found by Brill and Horowitz, generalizing the (zero-energy) ``Witten bubble" solution. Some of these data have negative total energy. We show here that all the negative energy bubble solutions start out expanding away from the moment of time symmetry, while the positive energy bubbles can start out either expanding or contracting. Thus it is unlikely that the negative energy bubbles would collapse and produce a naked singularity.Comment: 6 pages, plain LaTeX, UMDGR-94-08

    Generalization of the model of Hawking radiation with modified high frequency dispersion relation

    Full text link
    The Hawking radiation is one of the most interesting phenomena predicted by the theory of quantum field in curved space. The origin of Hawking radiation is closely related to the fact that a particle which marginally escapes from collapsing into a black hole is observed at the future infinity with infinitely large redshift. In other words, such a particle had a very high frequency when it was near the event horizon. Motivated by the possibility that the property of Hawking radiation may be altered by some unknowned physics which may exist beyond some critical scale, Unruh proposed a model which has higher order spatial derivative terms. In his model, the effects of unknown physics are modeled so as to be suppressed for the waves with a wavelength much longer than the critical scale, k0−1k_0^{-1}. Surprisingly, it was shown that the thermal spectrum is recovered for such modified models. To introduce such higher order spatial derivative terms, the Lorentz invariance must be violated because one special spatial direction needs to be chosen. In previous works, the rest frame of freely-falling observers was employed as this special reference frame. Here we give an extension by allowing a more general choice of the reference frame. Developing the method taken by Corley, % and especially focusing on subluminal case, we show that the resulting spectrum of created particles again becomes the thermal one at the Hawking temperature even if the choice of the reference frame is generalized. Using the technique of the matched asymptotic expansion, we also show that the correction to the thermal radiation stays of order k0−2k_0^{-2} or smaller when the spectrum of radiated particle around its peak is concerned.Comment: 23 pages, 5 postscript figures, submitted to Physical Review

    Instantons, supersymmetric vacua, and emergent geometries

    Full text link
    We study instanton solutions and superpotentials for the large number of vacua of the plane-wave matrix model and a 2+1 dimensional Super Yang-Mills theory on R×S2R\times S^2 with sixteen supercharges. We get the superpotential in the weak coupling limit from the gauge theory description. We study the gravity description of these instantons. Perturbatively with respect to a background, they are Euclidean branes wrapping cycles in the dual gravity background. Moreover, the superpotential can be given by the energy of the electric charge system characterizing each vacuum. These charges are interpreted as the eigenvalues of matrices from a reduction for the 1/8 BPS sector of the gauge theories. We also discuss qualitatively the emergence of the extra spatial dimensions appeared on the gravity side.Comment: 29 pages, 3 figures, latex. v2: references added, comments added. v3: accepted version in PR

    BPS Condensates, Matrix Models and Emergent String Theory

    Get PDF
    A prescription is given for computing anomalous dimensions of single trace operators in SYM at strong coupling and large NN using a reduced model of matrix quantum mechanics. The method involves treating some parts of the operators as "BPS condensates" which, in certain limit, have a dual description as null geodesics on the S5S^5. In the gauge theory, the condensate is similar to a representative of the chiral ring and it is described by a background of commuting matrices. Excitations around these condensates correspond to excitations around this background and take the form of "string bits" which are dual to the "giant magnons" of Hofman and Maldacena. In fact, the matrix model approach gives a {\it quantum} description of these string configurations and explains why the infinite momentum limit suppresses the quantum effects. This method allows, not only to derive part of the classical sigma model Hamiltonian of the dual string (in the infinite momentum limit), but also its quantum canonical structure. Therefore, it provides an alternative method of testing the AdS/CFT correspondence without the need of integrability.Comment: 36 pages, 1 figure, 2 appendices, v2: references adde

    Fate of Kaluza-Klein Bubble

    Full text link
    We numerically study classical time evolutions of Kaluza-Klein bubble space-time which has negative energy after a decay of vacuum. As the zero energy Witten's bubble space-time, where the bubble expands infinitely, the subsequent evolutions of Brill and Horowitz's momentarily static initial data show that the bubble will expand in terms of the area. At first glance, this result may support Corley and Jacobson's conjecture that the bubble will expand forever as well as the Witten's bubble. The irregular signatures, however, can be seen in the behavior of the lapse function in the maximal slicing gauge and the divergence of the Kretchman invariant. Since there is no appearance of the apparent horizon, we suspect an appearance of a naked singularity as the final fate of this space-time.Comment: 13 pages including 10 figures, RevTeX, epsf.sty. CGPG-99/12-8, RESCEU-6/00 and DAMTP-2000-30. To appear in Phys. Rev.

    Strings on conifolds from strong coupling dynamics: quantitative results

    Full text link
    Three quantitative features of string theory on AdS_5 x X_5, for any (quasi)regular Sasaki-Einstein X_5, are recovered exactly from an expansion of field theory at strong coupling around configurations in the moduli space of vacua. These configurations can be thought of as a generalized matrix model of (local) commuting matrices. First, we reproduce the spectrum of scalar Kaluza-Klein modes on X_5. Secondly, we recover the precise spectrum of BMN string states, including a nontrivial dependence on the volume of X_5. Finally, we show how the radial direction in global AdS_5 emerges universally in these theories by exhibiting states dual to AdS giant gravitons.Comment: 1+28 pages. 1 figur

    Hawking radiation without black hole entropy

    Get PDF
    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws of black hole mechanics do not apply, and in situations in which the notion of black hole entropy does not even make any sense. This observation has important implications for any derivation of black hole entropy that seeks to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma

    Relativistic Acoustic Geometry

    Get PDF
    Sound wave propagation in a relativistic perfect fluid with a non-homogeneous isentropic flow is studied in terms of acoustic geometry. The sound wave equation turns out to be equivalent to the equation of motion for a massless scalar field propagating in a curved space-time geometry. The geometry is described by the acoustic metric tensor that depends locally on the equation of state and the four-velocity of the fluid. For a relativistic supersonic flow in curved space-time the ergosphere and acoustic horizon may be defined in a way analogous the non-relativistic case. A general-relativistic expression for the acoustic analog of surface gravity has been found.Comment: 14 pages, LaTe

    Bogoliubov theory of the Hawking effect in Bose-Einstein condensates

    Get PDF
    Artificial black holes may demonstrate some of the elusive quantum properties of the event horizon, in particular Hawking radiation. One promising candidate is a sonic hole in a Bose-Einstein condensate. We clarify why Hawking radiation emerges from the condensate and how this condensed-matter analog reflects some of the intriguing aspects of quantum black holes
    • …
    corecore