20 research outputs found

    Evaluation of HBV-Like circulation in wild and farm animals from Brazil and Uruguay

    Get PDF
    The origin of the hepatitis B virus is a subject of wide deliberation among researchers. As a result, increasing academic interest has focused on the spread of the virus in different animal species. However, the sources of viral infection for many of these animals are unknown since transmission may occur from animal to animal, human to human, animal to human, and human to animal. The aim of this study was to evaluate hepadnavirus circulation in wild and farm animals (including animals raised under wild or free conditions) from different sites in Brazil and Uruguay using serological and molecular tools. A total of 487 domestic wild and farm animals were screened for hepatitis B virus (HBV) serological markers and tested via quantitative and qualitative polymerase chain reaction (PCR) to detect viral DNA. We report evidence of HBsAg (surface antigen of HBV) and total anti-HBc (HBV core antigen) markers as well as low-copy hepadnavirus DNA among domestic and wild animals. According to our results, which were confirmed by partial genome sequencing, as the proximity between humans and animals increases, the potential for pathogen dispersal also increases. A wider knowledge and understanding of reverse zoonoses should be sought for an effective One Health response

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore