2,742 research outputs found
Recommended from our members
City regions and polycentricity: the East Midlands urban network
The aims of this paper were to clarify the meaning of the terms city region and polycentricy and to then examine evidence on urban centres in the East Midlands to see how far these terms describe the present configuration of the region
Mode Locking in a Periodically Forced Integrate-and-Fire-or-Burst Neuron Model
The minimal “integrate-and-fire-or-burst” (IFB) neuron model reproduces the salient features of experimentally observed thalamocortical relay neuron response properties, including the temporal tuning of both tonic spiking (i.e., conventional action potentials) and post-inhibitory rebound bursting mediated by the low-threshold Ca2+ current, IT. In previous work focusing on experimental and IFB model responses to sinusoidal current injection, large regions of stimulus parameter space were observed for which the response was entrained to periodic applied current, resulting in repetitive burst, tonic, or mixed (i.e., burst followed by tonic) responses. Here we present an exact analysis of such mode-locking in the integrate-and-fire-or-burst model under the influence of arbitrary periodic forcing that includes sinusoidally driven responses as one case. In this analysis, the instabilities of mode-locked states are identified as both smooth bifurcations of an associated firing time map and nonsmooth bifurcations of the underlying discontinuous flow. The explicit construction of borders in parameter space that define the instabilities of mode-locked zones is used to build up the Arnol’d tongue structure for the model. The zones for mode-locking are shown to be in excellent agreement with numerical simulations and are used to explore the observed stimulus dependence of burst versus tonic response of the IFB neuron model
Twelve tips for assessment psychometrics.
It is incumbent on medical schools to show, both to regulatory bodies and to the public at large, that their graduating students are "fit for purpose" as tomorrow's doctors. Since students graduate by virtue of passing assessments, it is vital that schools quality assure their assessment procedures, standards, and outcomes. An important part of this quality assurance process is the appropriate use of psychometric analyses. This begins with development of an empowering, evidence-based culture in which assessment validity can be demonstrated. Preparation prior to an assessment requires the establishment of appropriate rules, test blueprinting and standard setting. When an assessment has been completed, the reporting of test results should consider reliability, assessor, demographic, and long-term analyses across multiple levels, in an integrated way to ensure the information conveyed to all stakeholders is meaningful
The development of an accreditation scheme for accredited exercise physiologists
Background: Accredited Exercise Physiologists provide exercise services for people living with chronic disease, disability or injury and are recognised in Australia as Accredited Exercise Physiologists (AEP) under a national certification system administered by Exercise and Sport Science Australia (ESSA). A major breakthrough occurred for the AEP in 2006 when the Australian Department of Health and Ageing approved the AEP to deliver clinical exercise services for people with chronic medical conditions under the taxpayer-funded national health scheme, Medicare Australia. Aims: In light of these developments, the authors recognised the need for new accreditation criteria, and our report summarises the work that we did on behalf of the profession and ESSA in restructuring the accreditation system. Methods and Outcomes: We first performed a background study that defined the scope of practice of the AEP and benchmarked the AEP against other allied health professions in Australia and Clinical Exercise Physiologists internationally. We then constructed a new set of accreditation criteria comprising sets of pathologyspecific knowledge and experiences, together with a set of generic standards including communication, professional behaviour and risk management. All participating Australian universities (18 out of 27 responded) and 29 practitioner experts were then invited to provide comment and input into the draft guidelines. There was strong support for the new system that was implemented nationally on 1 January 2008 and is now administered by ESSA. Conclusions: This work has stimulated an unprecedented level of activity in the Australian university sector in developing new curricula in clinical exercise science and practice, and is intended to lead to improved standards of clinical exercise practice.<br /
Limits and dynamics of stochastic neuronal networks with random heterogeneous delays
Realistic networks display heterogeneous transmission delays. We analyze here
the limits of large stochastic multi-populations networks with stochastic
coupling and random interconnection delays. We show that depending on the
nature of the delays distributions, a quenched or averaged propagation of chaos
takes place in these networks, and that the network equations converge towards
a delayed McKean-Vlasov equation with distributed delays. Our approach is
mostly fitted to neuroscience applications. We instantiate in particular a
classical neuronal model, the Wilson and Cowan system, and show that the
obtained limit equations have Gaussian solutions whose mean and standard
deviation satisfy a closed set of coupled delay differential equations in which
the distribution of delays and the noise levels appear as parameters. This
allows to uncover precisely the effects of noise, delays and coupling on the
dynamics of such heterogeneous networks, in particular their role in the
emergence of synchronized oscillations. We show in several examples that not
only the averaged delay, but also the dispersion, govern the dynamics of such
networks.Comment: Corrected misprint (useless stopping time) in proof of Lemma 1 and
clarified a regularity hypothesis (remark 1
Stability analysis of electrical microgrids and their control systems
The drive towards renewable energy generation is causing fundamental changes in both the structure and dynamics of power grids. Their topology is becoming increasingly decentralised due to distributed, embedded generation, and the emergence of microgrids. Grid dynamics are being impacted by decreasing inertia, as conventional generators with massive spinning cores are replaced by DC renewable sources. This leads to a risk of destabilisation and places an upper limit on the volume of renewable power sources that can be installed. A wide variety of different control schemes have been proposed to overcome this problem. Such schemes fall into two broad categories: so-called 'grid-following' controllers that seek to match output AC power with grid frequency, and 'grid-forming' systems that seek to boost grid stability. The latter frequently work by providing synthetic inertia, enabling DC renewable sources to emulate conventional generators. This paper uses the master stability function methodology to analyse the stability of synchrony in microgrids of arbitrary size and containing arbitrary control systems. This approach provides a powerful and computationally efficient framework in which to benchmark the impact of any number of renewable sources on grid stability and thereby to support microgrid design strategies. The method is demonstrated by computing stability bounds for two different grid-forming systems, providing bounds on the feasible number of generators that can be accommodated. In addition, we contrast our results with predictions from a simplistic but widely-used phase oscillator model, finding that such descriptions significantly overestimate the grid stability properties
- …