12,579 research outputs found

    NASA-JSC antenna near-field measurement system

    Get PDF
    Work was completed on the near-field range control software. The capabilities of the data processing software were expanded with the addition of probe compensation. In addition, the user can process the measured data from the same computer terminal used for range control. The design of the laser metrology system was completed. It provides precise measruement of probe location during near-field measurements as well as position data for control of the translation beam and probe cart. A near-field range measurement system was designed, fabricated, and tested

    Recommendations for HER2 testing in the UK

    Get PDF
    Determining the HER2 status of breast carcinomas is a prerequisite for the use of the monoclonal antibody trastuzumab (Herceptin(R)), which has recently been licensed for the treatment of metastatic disease. This necessitates a test based on archival material. The preferred analyses are immunohistochemistry with fluorescent in situ hybridisation (FISH) as a follow up test for ambiguous results. Guidelines have been developed for standardised, well controlled procedures for the provision of reliable results. A group of three reference laboratories has been established to provide advice, quality assurance, and materials, where needed

    Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis

    Get PDF
    We present an extensive synthetic observational analysis of numerically- simulated radio galaxies designed to explore the effectiveness of conventional observational analyses at recovering physical source properties. These are the first numerical simulations with sufficient physical detail to allow such a study. The present paper focuses on extraction of magnetic field properties from nonthermal intensity information. Synchrotron and inverse-Compton intensities provided meaningful information about distributions and strengths of magnetic fields, although considerable care was called for. Correlations between radio and X-ray surface brightness correctly revealed useful dynamical relationships between particles and fields. Magnetic field strength estimates derived from the ratio of X-ray to radio intensity were mostly within about a factor of two of the RMS field strength along a given line of sight. When emissions along a given line of sight were dominated by regions close to the minimum energy/equipartition condition, the field strengths derived from the standard power-law-spectrum minimum energy calculation were also reasonably close to actual field strengths, except when spectral aging was evident. Otherwise, biases in the minimum- energy magnetic field estimation mirrored actual differences from equipartition. The ratio of the inverse-Compton magnetic field to the minimum-energy magnetic field provided a rough measure of the actual total energy in particles and fields in most instances, within an order of magnitude. This may provide a practical limit to the accuracy with which one may be able to establish the internal energy density or pressure of optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2 February 1, 200

    Electrostatic protection of the Solar Power Satellite and rectenna

    Get PDF
    Several features of the interactions of the solar power satellite (SPS) with its space environment were examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets were calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low-Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self-consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Magnetic shielding of the satellite, to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment is considered. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. The SPS design employed in this study is the 1978 MSFC baseline design utilizing GaAs solar cells at CR-2 and an aluminum structure

    Influence of Spin Wave Excitations on the Ferromagnetic Phase Diagram in the Hubbard-Model

    Full text link
    The subject of the present paper is the theoretical description of collective electronic excitations, i.e. spin waves, in the Hubbard-model. Starting with the widely used Random-Phase-Approximation, which combines Hartree-Fock theory with the summation of the two-particle ladder, we extend the theory to a more sophisticated single particle approximation, namely the Spectral-Density-Ansatz. Doing so we have to introduce a `screened` Coulomb-interaction rather than the bare Hubbard-interaction in order to obtain physically reasonable spinwave dispersions. The discussion following the technical procedure shows that comparison of standard RPA with our new approximation reduces the occurrence of a ferromagnetic phase further with respect to the phase-diagrams delivered by the single particle theories.Comment: 8 pages, 9 figures, RevTex4, accepted for publication in Phys. Rev.
    corecore