Mississippi State University Scholars Junction

MAFES Research Bulletins

MAFES (Mississippi Agricultural and Foresty Experiment Station)

4-1-1976

Evaluation of investments in rice-soybean rotations in the Delta of Mississippi

B. R. Eddleman

David W. Parvin Jr.

James G. Hamill

Fred T. Cooke Jr.

Follow this and additional works at: https://scholarsjunction.msstate.edu/mafes-bulletins

Recommended Citation

Eddleman, B. R.; Parvin, David W. Jr.; Hamill, James G.; and Cooke, Fred T. Jr., "Evaluation of investments in rice-soybean rotations in the Delta of Mississippi" (1976). *MAFES Research Bulletins*. 392. https://scholarsjunction.msstate.edu/mafes-bulletins/392

This Article is brought to you for free and open access by the MAFES (Mississippi Agricultural and Foresty Experiment Station) at Scholars Junction. It has been accepted for inclusion in MAFES Research Bulletins by an authorized administrator of Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

Evaluation of Investments in Rice-Soybean Rotations in the Delta of Mississippi

B. R. Eddleman, Agricultural Economist, MAFES Department of Agricultural Economics
D. W. Parvin, Jr., Associate Agricultural Economist MAFES Department of Agricultural Economics
James G. Hamill, Associate Agricultural Economist MAFES Department of Agricultural Economics
Fred T. Cooke, Jr., Agricultural Economist, CED, ERS, USDA, stationed at Stoneville

MISSISSIPPI AGRICULTURAL & FORESTRY EXPERIMENT STATION DIRECTOR JAMES H. ANDERSON MISSISSIPPI STATE MS 39762 in Cooperation with CED, ERS, USDA

enter and a share

- Acknowledgments -

Recognition is extended to Alfred L. Thomas, County Agent, Bolivar County, who first made us aware of the need for the information in this report.

The authors also acknowledge the assistance of their colleagues James M. Anderson, Norman C. Merwine, James H. Simpson and John E. Waldrop by their critical reading and review of this manuscript.

Chester M. Wells, Jr., Head of the Editorial Department of MAFES, is due a special note of thanks for his suggestions, criticisms and editorial guidance in turning earlier drafts of this manuscript into a readable product.

Evaluation of Investments in Rice-Soybean Rotations in the Delta of Mississippi

Removal of government restrictins on rice production triggered a increase in production in Assissippi---harvested acreage inc ased from 62,000 in 1973 to 108,-0) in 1974 and 171,000 in 1975 [1, 2' A still larger acreage may be p nted this year. Increases in a eage likely will be on land p nted to rice for the first time and n ch of it must be put to grade ("formed"). Rice production also requires investment in irrigation wells and equipment for putting water on the growing crop. In addition, producers may find it to their advantage to provide on-farm drying and storage of any new production before selling it to a mill.

Farmers who are considering the production of rice for the first time or who are thinking of expanding their existing rice acreage need a basis for estimating the profitability of the investment required. This involves the formulation of their expectations of future conditions¹ and the incorporation of these into decision-making---a process that becomes more difficult when decisions involve a flow of returns over long periods of time, as is true for investments in rice production.

Objectives

Our study was designed to generate information to assist farmers in appraising the feasibility of investing in the land forming, the irrigation wells and equipment and the drying-storing facilities needed for an efficient rice operation. Specifically, our attempt was

to determine the number of years required to "pay back" a given per acre investment in rice production or, alternatively, to determine the investment per acre that could be recaptured over a specified number of years.

Pocedure and Sources of Data

ross income per acre was estirated for the years 1976-1990 for nc and soybeans grown in two to tions (Table 1), for continuous sopeans grown on clay soil and fo solid cotton grown on clay soil. Wassumed three yield levels² for eat crop and converted production to value, using three different prices for each crop (Table 2).

Estimates of the cost of producing an acre of each crop in 1976 were made, based on production practices that we obtained from published reports of previous research [3, 4]. We used 1975 prices of production inputs except for those cost items with a machinery component, for which we used estimates of 1976 machinery and equipment prices provided by distributors in the area.

Variable costs ("direct expense") accounted for the bulk of the es-

"Iumbers in brackets refer to literature cited at the end of this bulletin.

Their estimates of crop yields and of actual or relative prices for products produced and resources used in prduction and their expectations with regard to changes in laws, regulations and other man-made const ints that impinge either directly or indirectly upon the success of their venture.

The yield of soybeans grown in rice-soybean rotation was assumed to be three bushels higher than that of scbeans grown continuously. This yield difference is reflected in the differences in net returns reported in Toles 4 and 5.

timated total cost of producing each crop in 1976 (Table 3). However, our estimates do not reflect all fixed costs ("indirect expense") that would be entailed in bringing new land into a ricesoybean rotation.³ Labor and machinery ownership and opera-

Table 1. Two Rice-Soybean Rotations, Clay Soils, Delta of Mississippi, 1976-1990.

Year	One Year Rice One Year Soybeans	One Year Rice Two Year Soybean
1	None (land forming)	None (land forming)
2	Rice	Rice
3	Rice	Rice
4	Soybeans	Soybeans
5	Soybeans	Soybeans
6	Rice	Rice
7	Soybeans	Soybeans
8	Rice	Soybeans
9	Soybeans	Rice
10	Rice	Soybeans
11	Soybeans	Soybeans
12	Rice	Rice
13	Soybeans	Soybeans
14	Rice	Soybeans
15	Soybeans	Rice

tion are the production items is we expect to experience the grees cost increases in the next few year consequently, costs of these it a for 1977 and subsequent years we increased over our 1976 estimate by 2.5 percent per year or pounded annually. Because no can be grown in the year when he is being put to grade, a cost equithe net income that could he been realized from producing artinuous soybeans or solid cost was charged to the rice-soylarotations in 1976.

Net income per acre from de crop was calculated by subtract total specified expenses in each the 15 years from our estimat gross annual income.⁴ Thus, out timates of net income for solicited ton and for continuous soybe are the returns to operat management, land and gerry farm overhead. For rice

Table 2. Annual gross income per acre for rice, soybeans and cotton, specified product price yield situations, Delta of Mississippi, 1976-1990.

Product price	1	Rice yields (bushels)	5	Soy	vbeans yie (bushels)	lds	С (ро	otton yield unds of lin	ds nt) ¹
	90	100	110	23	28	33	500	550	t)
				(Dolla	rs)				
Rice:									
3.00	270.00	300.00	330.00						
3.75	337.50	375.00	412.50						
4.50	405.00	450.00	495.00						
Sovbeans:									
4.50				103.50	126.00	148.50			
5.00				115.00	140.00	165.00			
5.50				126.50	154.00	181.50			
Cotton ² :									
.40							238.75	262.63	2
.45							273.44	300.78	3
.50							308.13	338.94	3

¹Includes the value of seed produced based on 1.55 pounds of seed per pound of lint. ²Price of cottonseed per pound was set at \$.05, \$.0625, and \$.075 when lint prices were \$.40, and \$.50 per pound, respectively.

³The prorated annual cost of the investment in land forming, irrigation wells and equipment, and dry storing facilities is reflected in our comparisons of net returns from new rice-soybean rotation with return from continuous soybeans and solid cotton (Tables 4 and 5).

⁴ The results presented in Tables 4 and 5 were computed from the average net income for the years 1976-1

8	bl	e 3.	Estimated	cost of	producing	one a	cre of ric	e, <mark>soybeans</mark>	s and	cotton,	usual	input	practice	es,
ea	a ly	soil	, Delta of	Mississi	ppi, 1976.									

ver itte m	Rice yield	¹ with per ds (bushel	· acre s) of	Soybe acre yi	eans ² wi elds (bus	th per hels) of	Solid cott yields (p	on ³ with j ounds of	per acre lint) of
SW	90	100	110	23	28	33	500	550	600
0:				(Dollars)					·
orect expense ⁴	186.72	190.72	194.72	45.10	45.50	45.90	213.82	218.32	222.82
ked expense ⁵	31.63	31.63	31.63	14.31	14.31	14.31	47.37	47.37	47.37
tal expense ⁶	218.35	222.35	226.35	59.41	59.81	60.21	261.19	265.69	270.19

[urce: [3] with 1976 estimates of machinery and equipment costs.

Rice behind sovbeans with 110-120 DBHP tractor.

Continuous soybeans, 8 row-equipment.

Solid cotton, 38-40 inch rows, 8 row-equipment.

Includes direct expenses for tractor and equipment, special equipment, labor, production uterials, variable harvesting costs, other miscellaneous production costs and interest on ^{eal}erating capital.

Includes ownership costs of tractor, equipment and special harvesting equipment. Does not inde fixed costs on irrigation well, charges for land forming or fixed costs for drying and storage of e on the farm.

Sum of direct expense and fixed expense.

ybeans grown in a new rice-^eybean rotation, however, our esnates of net income are the ferences between gross income d specified costs. (The prorated nd forming, irrigation wells and

facilities was not charged to the *uipment, and drying-storing* timated per acre net returns to eleven percent as follows:

soybeans and rice grown in a new rice-soybean rotation, but is rotation the estimated net returns reflected in our comparisons of net from continuous soybeans and returns from a new rice soybean solid cotton. Finally, the rotation with returns from con- differences in net income were disnual cost of the investment in tinuous soybeans and solid cotton.) counted to their 1976 value, using We then subtracted from the es- discount rates of seven, nine and

$$(1) V_{o} = \sum_{n=1}^{t} \frac{NI_{n} - NI_{an}}{(1+i)^{n}}$$
Where V_{o} = the present value of the stream of per acre net income differences
$$NI_{n}$$
 = the estimated net income per acre from a rice-soybean system of rotation in year n
$$NI_{an}$$
 = the estimated net income per acre from either the continuous soybean or solid cotton alternative in year n
$$n = a \text{ particular year in the planning period (n = 1, 2, ..., 1)}$$

$$t = \text{the planning period in years}$$

$$t = \text{the planning period in the stream of net income differences}$$

$$i = \text{the rate used to discount the stream of net income differences}$$

$$\sum_{n=1}^{t} \frac{NI_{m} - NI_{an}}{(1+i)^{n}}$$

$$n = a \text{ particular year in the planning period (n = 1, 2, ..., 1)}$$

$$NI_{an} = \sum_{n=1}^{t} \frac{NI_{n} - NI_{an}}{(1+i)^{n}}$$

3

ans and a of		ns - <u>3</u> /	5.50SB 4.50R	(18)	-113	14	130	142	245 245	256	336	344	408 408	415	421 465		-111	12	121	143	225	234	303	310	361	367 371	405		-109 9	113	133 133	207	221	273 279	284	325 325	328 354
nd Soybea ls, Delta		. Soybea bu. Rice	5.00SB 3.75R	(17)	86-	-28	34	45	103	112	121	164	1/1 198	204	230		-96	-29	30 41	50	92	108	138	145	172 172	177 181	197		-94 -30	26 36	44	83	96	122	132	153 153	168 168
f Rice a Clay Sol	Rotation	36 bu 110	4.50SB 3.00R	(16)	-82	-70	-62	-52	- 39	-31	-23	-16	-10 -12	- 7	5		-81	-69	-62 -52	-44	-40	- 33	-26	-21	-17	-13	-12		-80 -68	-61	-44	-42	- 30	-29 -25	-20	- 18 - 18	-17
Prices o ations,	Soybean	tns - 2/	5.50SB 4.50R	(15)	881	27	132	156	238 238	248	321	329	337	394	400		-86	25	124 136	146	219	228	291	298	344 344	350 354	384		-85 22	116	12/	202	217	264 269	274	311 311	31/ 337
elds and /bean Rot	Two Year	1. Soybea bu. Rice	5.00SB 3.75R	(14)	-75	-13	42	53	105	114	123 154	161	168 192	198	220		-74	-14	38 8 7	285	95	111 111	137	143	168 168	172 177	190		-72 -14	34	53	86	100	122	132	151 151	154 164
ified Yi Rice-Soy	Rice -	31 bi 100	4.50SB 3.00R	(13)	-62	-53	-48	- 38	-28	-20	-14	L –	-4		9 1		-61	-52	-48 -38	- 30	-29	-15	-16	-11	0 6	- 4	-4-		-60 -51	-47	-31	-30	-18	-19	-10	- 6 - 7 - 7	9-6-
for Spec tment in	One Year	ins - <u>1</u> /	5.50SB 4.50R	(12)	-63	41	134	146	231	241	306 306	314	322 366	373	379 413		-62	38	126 138	148	213	222	279	286	327	332 337	363		-60 36	119	139 139	198	213	254 259	264	297 297	301 320
oybeans, ck" Inves		ı. Soybea Du. Rice	5.00SB 3.75R	(11)	-52	2	50	61 72	107	116	151	158	165 185	191	210 210		-51	1	40 5.7	66	98	114 114	136	142	164 164	168 173	183		-50 0	43	7C	90	103	122 128	132	148	152 160
fnuous So o "Paybao		26 bi	4.50SB 3.00R	(10) t rate)-	-41	-36	-34	-24	-16	00 o 1	0 4-	e o	m رو	6	7 7	t rate)-	-40	-35	-34	-16	-17	011	-1	- 1	0 t	4α	ი	nt rate)	-40 -35	-33	-17	-18	9 -	6- 1	100	ηο. Ι	тo
)ver Cont equired t		15 - 3/	5.50SB	(9) % discoun	-113		130	142 157	245	256	342 342	409	473 473	480	533 533	discoun	-111	12	133	143	225	234	309	364 370	0/0 416	421 458	462	L% discou	-109 9	113	124 133	207	273 273	279 375	330	371 371	400 403
tations (Years Re		. Soybear bu. Rice	5.00SB 3.75R 2	(8) (7)	- 98	-28	34	45	103	112	160 160	193	200	233	260	(6)	- 96-	-29	30 40	50	92	135 135	141	169 177	196 196	201 218	222	(1)	-94 -30	26 26	50 44	83	119	125 148	153	174 174	187 190
yybean Ro Number of	lotation	36 bu 110	4.50SB 3.00R	(7)	-82	-70	-62	-52	-39	-31	-30 -23	-23	-1/ -19	-13	-12		-81	-69	-62	-44	-40	-33	-26	-26	-21 -23	-19 -21	-18		-80 -68	-61	-44	-42	- 34	-29 -79	-25	-23	-25 -22
o Rice-Sc ent, by ^N	Soybean F	ns - 2/	5.50SB 4.50R	(9)	88-	27	132	156 156	238	248	318 329	386	394 444	451	493 499		-86	25	124 135	146	219	228 288	296	345	392 392	397 430	435		-85 22	116	136	202	262	269 310	315	34/ 352 252	377 380
From Tw. Investme	ne Year	. Soybean bu. Rice	5.00SB 3.75R	(5)	-75	-13	42	53	105	114	149 157	185	192 216	222	245 245		-74	-14	38 4.8	28	95	133 133	140	164 160	188 188	193 207	211		-72 -14	34	44 53	86 0.7	119	125 145	149	168 168	179 182
Per Acre scount on)*	Rice - 0	31 bu 100	4.50SB 3.00R	(4)	-62	-53	-48	-38	-28	-20	-13	-16	-13	00 d I 7	-17 - 8		-61	-52	- 48 2,8	-30	-29	-22 -22	-16	-18	-16 -16	-12 -16	-12		-60 -51	-47	-31	- 30	-24	-19 -71	-16	-19 -16	-18 -16
Returns es of Di: 1976-1990	One Year	ns - 1/	5.50SB 4.50R	(3)	-63	41	134	146 150	231	241	303 311	364	3/L 416	422	405 465		-62	38	126 138	148	213	222	283	327	368	374 402	407		-60 36	119	139 139	198	252	258 294	300	320 332 357	354 358
ss of Net Ifled Rat Issippi,		1. Soybea 1. Rice	5.00SB 3.75R	(2)	-52	l m	50	61 72	107	116	140 154	178	184 204	210	230		-51	г,	46 57	66	98	132 132	138	158	179 179	184 196	200		-50 0	43	7C	06	119	141	146	162 162	1/2 174
4. Excet Speci Missi		26 bi 90 b	4.50SB 3.00R	(1)	\$-41	-36	-34	-24	-16	00 , ,	- TT	6-	ກ ແ ເ	ς Γ	2 4		\$-40	-35	-34	-16	-17	0 T T O	-7	-10	-10	- 10	9		\$-40 -35	-33	-17	-18	-14	- 1-9	1 00 , 1 1 ,		-12
Table			Year		-	5	Э	v 17	n vo	L 0	00	10	11	13	14 15		1	5	e 4	rυγ	91	~ ~ ~	6	10	12	13	15		7 1	e v	t ∿	91	~ 00	6 C	11	13	14 15

4

* The result & when a commuted them the guerran not income has the works 1976-1990.

		50SB	18)	93	55	06	77	20	92	20	08	34	59	33	56	37		91	51	79	60	37	36	61	85	61	nc	2 4		20	42		39	8	60	76	22		<u> </u>	40	ν γ	0 0		ζ vi	00	52	
	vbeans	SB 5.				H C	10	4 m	i m	4	Ś	5	Ś	9	9	0		Ĩ		Г	2(2.	Э.	ñ	e e	4	u t	า ช	h ir	n r	9		ĩ	7	I	510	2,		., . M	, r , r	7 7	7 1	, C	с Го	42	56	
E	u. Soy bu. R	5.005	(17)	-54	58	160	0T7	341	385	426	493	531	567	622	655	731		-53	55	152	198	241	316	354	390	448	4/7	000	4 C C C	603	637		-52	52	143	187	226	293	327	800	407	1.57	107	513	532	558	
Rotatio	36 bi 110	4.50SB	(16)	-15	61	130	067 262	319	377	432	477	427	574	611	654	694 724		-15	59	124	187	246	296	347	395	433	4/0	0.1.0	577	608	631		-15	56	118	177	230	275	320	202	574 1.20	472	400	511	535	553	
Soybean	$\frac{ans}{2}$	5.50SB 4.50R	(15)	-68	99	190	757 122	352	381	408	489	514	539	606	628	0C9		-67	63	180	209	236	327	352	375	444	400	400	557 757	574	615		-66	59	T 70	197	222	303	325	345	404	4 2 D	4.87	705	509	540	
Two Year	u. Soybe bu. Ric	5.00SB 3.75R	(14)	-33	70	163	212	335	377	418	479	516	551	602	634	004 705		-32	67	155	200	243	311	348	383	436	400	47J	561	100	616		-32	64	148	190	228	290	322	205	1 2 5 1	44.0	170	667	517	541	
Rice -	31 b 100	4.50SB 3.00R	(13)	m	73	137	202	317	374	427	469	517	563	597	639	6/8 705		ń	71	131	192	249	295	345	391	427	101	101 101 101	200 200	595	616		ę	68	125	182	234	276	319	905	065	151	476	502	525	542	
One Year	ans - <u>1</u> /	5.50SB 4.50R	(12)	-44	78	190	250	341	369	396	469	494	518	578	601	671		-43	74	180	209	236	317	342	365	428	0 7 7	100	234	551	588		-42	71	1/1	197	222	295	317	155	005 1007	400	424	476	489	518	
	u. Soybe bu. Rice	5.00SB	(11)	11	82	167	124 250	328	370	409	464	501	535	581	612	679		-11	79	159	203	244	306	342	376	424	404	104	543	567	595		-11	76	152	193	230	286	318	34/	505 (1)	416	100	484	502	524	
1	26 bi 90 I	4.50SB 3.00R	(10)	21 21	86	144	202 268	316	370	422	460	507	552	583	624	199 199	r rate)	21	83	138	197	252	295	343	388	420	400	470 531	147	582	602	nt rate)-	20	80	132	188	238	276	318	105	CDC 717	411	447	492	516	530	
	$\frac{ans}{2}$. 50SB	(6)	-93	55	190	777	364	392	489	515	599	624	698	721	805	discoun	-91	51	179	209	237	336	361	744	467	7.7	100	789	789	200	% discou	-89	48	T69	197	222	311	333	CD4	107	001	547	561	599	512	
	Soybe u. Ric	00SB 5 75R 4	8)	54	58	60	ο T α	01 41	85	57	96	60	96	51	84	۶1 61	~(9%	53	55	52	98	41	16	54	17	20	000	0		40	63	(11	52	52	43	201	26	50	27			tα	0 6	34	62	80	
lon	36 bu.	50SB 5.) ()	15 -	51	30	2 0	10 10	77 3	26 4	77 4	20 5	57 5	9 40	9 24	- L L			89	24 1	37 1	46 2	96 3	47 3	39 4	34	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		, v , c	96	25 6			99	8	1	2 2	15 2	02 1	, v	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 2 2	200	06	26 5	18 5	
Rotati		SB 4.9		ī	U I		A C	2 E	m m	42	47	5	56	90	79	10		Т	01	12	18	21	29	36	m :	4	1 1	ń r			9		T		3		2	2	20 0	5 6	5	7 47	7	r S	52	27	
ybean	$\frac{ans}{e}$ -	5.50S	(9)	-68	99	190	252	352	381	469	495	571	596	663	686	764		-67	63	180	209	236	327	352	427	450		0 0 0 0 0	509	650	666		-66	59	T/0	197	222	303	325	195 710	0T #	407	500	536	571	583	
Year So	u. Soybe bu. Ric	5.00SB 3.75R	(5)	- 33	20	163	212	335	377	777	482	540	575	626	658	730 730		-32	67	155	200	243	311	348	905	438	100	244	185	615	637		-32	64	148	190	228	290	222	212	400	263	967	516	542	559	
ce - One	31 b 100	4.50SB 3.00R	(7)	۳ س	73	137	202	317	374	419	469	508	554	588	630	669 769		ę	71	131	192	249	295	345	384	427	400	5 J F	557	580	609		m j	68	52T	182 227	234	9/7	519	500c	717	448	044	495	513	535	
e Year R1	ı	5.50SB4/	(3)	-44	78	190	250	341	369	448	474	543	567	628	650	722		-43	74	180	209	236	317	342	410	432	000	a contra	575	616	632		-42	17	T/T	198 222	222	C 6 7	31/ 720	305	000 677	054	867	512	543	555	
0n	Soybeans Rice $\frac{1}{1}$.00SB4/	(2)	-11	82	16/	259	328	370	430	467	520	554	600	631	0/0		-11	78	159	203	244	306	342	394	47.0	100	225	000	590	612		-11	76	7 C T	193 220	230	286	SLS	000	220	677	479	498	522	539	
	26 bu. 90 bu	OSB4/ 5	(1	. 66	4 0	0 00	0.0	0	2	0	9	L,	5	n c	9		1	13	8	2	52	5	6	20 0	0.0			7	74	12		0	02	22	20 00	20	9		л ч т		6	0	35)1	22	
		4.5	[]	\$ 2	α0 -	14	26	31	37	41	46	49	54	57	19	29		\$ 2	00	13	19	25	29	34	5	7.5	1 2 7	r r	24	56	55	1	\$			Ϋ́	7	70	Ϋ́́	3 C	14	4	46	34	50	5	
		Vear		Ч	2	- - - - - - - - - 	t ur	9 0	2	00	6	10	11	12	τ, -	12 t		Г	2	Ś	4	Ś	9		000	א כ	2 -	10	10	14	15			2 0	n -	t u	Ω V	o r	- 0	0 0	0	2	12	13	14	15	

 $\frac{1}{2}$ Compared with solid cotton yielding 500 pounds of line per acre. $\frac{2}{2}$ Compared with solid cotton yielding 550 pounds of lint per acre. $\frac{3}{4}$ Compared with solid cotton yielding 600 pounds of lint per acre. $\frac{4}{4}$ Prices of lint were \$.40, \$.45 and \$.50 per pound when soybeans and rice were priced at \$4.50 - \$3.00, \$5.00 - \$3.75, and \$5.50 - \$4.50 per bushel,

respectively.

5

Contract Show the

+ The reaction

Application to Investment in a Rice-Soybean Rotation⁵

The discounted net incomes (Tables 4 and 5) represent the additional net income that would be available to repay the investment in land forming, irrigation wells and equipment, and drying-storing facilities.⁶ Once these investments have been recaptured these additions to net income would become increased returns to operator management, land and general farm overhead.

Returns to investment and length of "payback" period---The results reported in Tables 4 and 5 may be used in two ways. Suppose that a soybean producer has been attaining yields of 28 bushels per acre. He is considering forming his land for rice production and using a rotation of rice in one year and soybeans in one year. He expects to average 100 bushels per acre from rice and 31 bushels from soybeans following rice in the rotation. He also expects to receive an average price of \$5.00 per bushel for soybeans, \$3.75 for rice. He wishes to know how much investment per acre for land forming, for an irrigation system and for drying-storing facilities could be paid back in six years, using a discount rate of seven percent. Looking at column

(5) of Table 4, under the seven percent discount rate, he finds that an investment of \$105 per acre could be repaid in six years.

Or suppose that the same years, if soybeans bring \$4.50 ar producer estimates that he must invest \$145 per acre to get into rice production and wishes to know how many years it will take to repay this investment under the vield, product prices and discount rate specified in the above example. In Column (5) of Table 4, under the seven percent discount rate, he finds that a payback period of eight years would be required to return the \$145 investment. The repayment period and the investment required for other yield levels, for other prices of rice and soybeans and for a rotation of one year of rice and two years of soybeans can be determined for discount rates of seven, nine and eleven percent by interpreting Table 4 in the same manner. Table 5 contains the same information for producers who are considering a change from solid cotton to a rice-soybean rotation.

Price that rice must bring for ricesoybean rotations to compete with continuous soybeans---Rice would have to be priced at above \$3.00 for a rice-soybean rotation to return a

positive return on investment. example, rice would have to br \$3.76 per bushel to recapture a \$ investment per acre within nine percent discount rate is u (Figure 1).⁷ With this price soybeans and the same disco rate, rice would have to bring \$: to return an investment of \$100 acre in 12 years.

Price that cotton must bring compete with rice-soybe rotations---A price of only 20 ce per pound of lint⁸ would be requ for solid cotton yielding 500 pou of lint per acre to compete effect ly with the rice-soybean rotati under conditions of \$3.00 rice, \$ soybeans, a \$325 per acre inv ment in a rice-soybean rotation a two-year payback period wi nine percent discount rate (Fir 2).⁹ A lower investment in soybean rotations and a lor payback period would req higher cotton prices for cotton t main competitive, holding other assumptions constant, cotton still needs to bring onl cents to compete with an inv ment of \$100 per acre in a soybean rotation using a 15payback period.

⁵The results of this study are applicable only to situations where land forming is required for rice prod tion.

⁶We believe that our estimates of profitability and of the lengths of "payback" periods are conservati because we held yields and prices constant through 1990 while allowing labor and machinery ownership o operation costs to increase by 2.5 percent per year compounded annually.

⁷ The price of rice did not vary more than five cents per bushel above or below the curves shown in Figur for the three yield situations and the two rice-soybean rotations.

⁸Includes the value of seed which was computed by adding 1.25 cents for each 5-cent increase in lint pr (seed were considered to have no value with lint at 20 cents or lower).

⁹The price of cotton lint did not vary more than one cent per pound above or below the curves shown Figure 2 for the three yield situations and the two rice-soybean rotations.

Figure 1. Price that rice must bring to return specified investments¹ in ricesoybean rotations, with \$4.50 soybeans and a 9 percent discount rate, by years required to repay investment, clay soils, Delta of Mississippi.

¹An amount in addition to the net return from continuous soybeans yielding 23 bushels per acre and selling for \$4.50 per bushel.

¹An amount equivalent to the net return from rice-soybean rotations with 90 bushel rice at \$3.00 and 26 bushel beans at \$4.50.

 2 Includes the value of seed which was computed by adding 1.25 cents for each 5-cent increase in lint price (seed were considered to have no value with lint at 20 cents or lower).