433 research outputs found
Exploring site formation and building local contexts through wiggle-match radiocarbon dating: re-dating of the Firth of Clyde Crannogs, Scotland
There are at least four wooden intertidal platforms, also known as marine crannogs, in the Firth of Clyde, on the west coast of Scotland. The interpretation of these sites partly depends on their dating and, if coeval, they could point to the presence of a native maritime hub. Furthermore, the spatial coincidence with the terminus of the Antonine Wall has led to speculation about the role they may have played in Roman-native interaction during the occupation of southern Scotland in the early first millennium cal ad. Hence, a better absolute chronology is essential to evaluate whether the marine crannogs were contemporary with one another and whether they related to any known historic events. This article presents results of a wiggle-match dating project aimed at resolving these uncertainties at two of the sites in question, Dumbuck and Erskine Bridge crannogs. The results show that the construction of these sites pre-date direct Roman influence in Scotland. Furthermore, the results indicate that the two sites were built at least 300 years apart, forcing us to consider the possibility that they may have functioned in very different historical contexts. Other findings include technical observations on the fine shape of the radiocarbon calibration curve near the turn of the first millennia bc/ad and potential evidence for persistent contamination in decayed and exposed sections of waterlogged alder
Projection Postulate and Atomic Quantum Zeno Effect
The projection postulate has been used to predict a slow-down of the time
evolution of the state of a system under rapidly repeated measurements, and
ultimately a freezing of the state. To test this so-called quantum Zeno effect
an experiment was performed by Itano et al. (Phys. Rev. A 41, 2295 (1990)) in
which an atomic-level measurement was realized by means of a short laser pulse.
The relevance of the results has given rise to controversies in the literature.
In particular the projection postulate and its applicability in this experiment
have been cast into doubt. In this paper we show analytically that for a wide
range of parameters such a short laser pulse acts as an effective level
measurement to which the usual projection postulate applies with high accuracy.
The corrections to the ideal reductions and their accumulation over n pulses
are calculated. Our conclusion is that the projection postulate is an excellent
pragmatic tool for a quick and simple understanding of the slow-down of time
evolution in experiments of this type. However, corrections have to be
included, and an actual freezing does not seem possible because of the finite
duration of measurements.Comment: 25 pages, LaTeX, no figures; to appear in Phys. Rev.
Weisskopf-Wigner Decay Theory for the Energy-Driven Stochastic Schr\"odinger Equation
We generalize the Weisskopf-Wigner theory for the line shape and transition
rates of decaying states to the case of the energy-driven stochastic
Schr\"odinger equation that has been used as a phenomenology for state vector
reduction. Within the standard approximations used in the Weisskopf-Wigner
analysis, and assuming that the perturbing potential inducing the decay has
vanishing matrix elements within the degenerate manifold containing the
decaying state, the stochastic Schr\"odinger equation linearizes. Solving the
linearized equations, we find no change from the standard analysis in the line
shape or the transition rate per unit time. The only effect of the stochastic
terms is to alter the early time transient behavior of the decay, in a way that
eliminates the quantum Zeno effect. We apply our results to estimate
experimental bounds on the parameter governing the stochastic effects.Comment: 29 pages in RevTeX, Added Note, references adde
Resonance Fluorescence Spectrum of a Trapped Ion Undergoing Quantum Jumps
We experimentally investigate the resonance fluorescence spectrum of single
171Yb and 172Yb ions which are laser cooled to the Lamb-Dicke regime in a
radiofrequency trap. While the fluorescence scattering of 172Yb is continuous,
the 171Yb fluorescence is interrupted by quantum jumps because a nonvanishing
rate of spontaneous transitions leads to electron shelving in the metastable
hyperfine sublevel 2D3/2(F=2). The average duration of the resulting dark
periods can be varied by changing the intensity of a repumping laser field.
Optical heterodyne detection is employed to analyze the fluorescence spectrum
near the Rayleigh elastic scattering peak. It is found that the stochastic
modulation of the fluorescence emission by quantum jumps gives rise to a
Lorentzian component in the fluorescence spectrum, and that the linewidth of
this component varies according to the average duration of the dark
fluorescence periods. The experimental observations are in quantitative
agreement with theoretical predictions.Comment: 14 pages including 4 figures, pdf file, fig.1 replace
Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice
Motivated by the large strain shear of loose granular materials we introduced
a model which consists of consecutive optimization and restructuring steps
leading to a self organization of a density field. The extensive connections to
other models of statistical phyics are discussed. We investigate our model on a
hierarchical lattice which allows an exact asymptotic renormalization
treatment. A surprisingly close analogy is observed between the simulation
results on the regular and the hierarchical lattices. The dynamics is
characterized by the breakdown of ergodicity, by unusual system size effects in
the development of the average density as well as by the age distribution, the
latter showing multifractal properties.Comment: 11 pages, 7 figures revtex, submitted to PRE see also:
cond-mat/020920
Atomic diffraction from nanostructured optical potentials
We develop a versatile theoretical approach to the study of cold-atom
diffractive scattering from light-field gratings by combining calculations of
the optical near-field, generated by evanescent waves close to the surface of
periodic nanostructured arrays, together with advanced atom wavepacket
propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Why Operationism Doesn't Go Away: Extrascientific Incentives of Social-Psychological Research
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69038/2/10.1177_004839318601600302.pd
Invasive nonânative species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region
The Antarctic is considered to be a pristine environment relative to other regions of the Earth, but it is increasingly vulnerable to invasions by marine, freshwater and terrestrial nonânative species. The Antarctic Peninsula region (APR), which encompasses the Antarctic Peninsula, South Shetland Islands and South Orkney Islands, is by far the most invaded part of the Antarctica continent. The risk of introduction of invasive nonânative species to the APR is likely to increase with predicted increases in the intensity, diversity and distribution of human activities. Parties that are signatories to the Antarctic Treaty have called for regional assessments of nonânative species risk. In response, taxonomic and Antarctic experts undertook a horizon scanning exercise using expert opinion and consensus approaches to identify the species that are likely to present the highest risk to biodiversity and ecosystems within the APR over the next 10 years. One hundred and three species, currently absent in the APR, were identified as relevant for review, with 13 species identified as presenting a high risk of invading the APR. Marine invertebrates dominated the list of highest risk species, with flowering plants and terrestrial invertebrates also represented; however, vertebrate species were thought unlikely to establish in the APR within the 10 year timeframe. We recommend (a) the further development and application of biosecurity measures by all stakeholders active in the APR, including surveillance for species such as those identified during this horizon scanning exercise, and (b) use of this methodology across the other regions of Antarctica. Without the application of appropriate biosecurity measures, rates of introductions and invasions within the APR are likely to increase, resulting in negative consequences for the biodiversity of the whole continent, as introduced species establish and spread further due to climate change and increasing human activity
- âŠ