1,866 research outputs found

    General moments of the inverse real Wishart distribution and orthogonal Weingarten functions

    Full text link
    Let WW be a random positive definite symmetric matrix distributed according to a real Wishart distribution and let W1=(Wij)i,jW^{-1}=(W^{ij})_{i,j} be its inverse matrix. We compute general moments E[Wk1k2Wk3k4...Wk2n1k2n]\mathbb{E} [W^{k_1 k_2} W^{k_3 k_4} ... W^{k_{2n-1}k_{2n}}] explicitly. To do so, we employ the orthogonal Weingarten function, which was recently introduced in the study for Haar-distributed orthogonal matrices. As applications, we give formulas for moments of traces of a Wishart matrix and its inverse.Comment: 29 pages. The last version differs from the published version, but it includes Appendi

    Low Timing Jitter Detector for Gigahertz Quantum Key Distribution

    Get PDF
    A superconducting single-photon detector based on a niobium nitride nanowire is demonstrated in an optical-fibre-based quantum key distribution test bed operating at a clock rate of 3.3 GHz and a transmission wavelength of 850 nm. The low jitter of the detector leads to significant reduction in the estimated quantum bit error rate and a resultant improvement in the secrecy efficiency compared to previous estimates made by use of silicon single-photon avalanche detectors.Comment: 11 pages, including 2 figure

    Decoupling heavy particles simultaneously

    Full text link
    The renormalization group is extended to cases where several heavy particles are decoupled at the same time. This involves large logarithms which are scale-invariant and so cannot be eliminated by a change of renormalization scheme. A set of scale-invariant running couplings, one for each heavy particle, is constructed without reference to intermediate thresholds. The entire heavy-quark correction to the axial charge of the weak neutral current is derived to next-to-leading order, and checked in leading order by evaluating diagrams explicitly. The mechanism for cancelling contributions from the top and bottom quarks in the equal-mass limit is surprisingly non-trivial.Comment: 6 pages, 4 figures. Talk presented at the "QCD Down Under" Workshop, Barossa Valley and Adelaide, Australia, 10-19 March 2004, with ref 8 now linked to hep-ph/050727

    The WHAM Northern Sky Survey and the Nature of the Warm Ionized Medium in the Galaxy

    Full text link
    The Wisconsin H-Alpha Mapper (WHAM) has completed a velocity-resolved map of diffuse H-alpha emission of the entire northern sky, providing the first comprehensive picture of both the distribution and kinematics of diffuse ionized gas in the Galaxy. WHAM continues to advance our understanding of the physical conditions of the warm ionized medium through observations of other optical emission lines throughout the Galactic disk and halo. We discuss some highlights from the survey, including an optical window into the inner Galaxy and the relationship between HI and HII in the diffuse ISM.Comment: 9 pages, 3 figures. To be published in "How does the Galaxy work?", eds. E.J. Alfaro, E. Perez & J. Franco, Kluwer, held 23-27 June 2003 in Granada, Spain. Higher resolution version available at http://www.astro.wisc.edu/~madsen/prof/pubs.htm

    Exponentiation of the Drell-Yan cross section near partonic threshold in the DIS and MSbar schemes

    Get PDF
    It has been observed that in the DIS scheme the refactorization of the Drell-Yan cross section leading to exponentiation of threshold logarithms can also be used to organize a class of constant terms, most of which arise from the ratio of the timelike Sudakov form factor to its spacelike counterpart. We extend this exponentiation to include all constant terms, and demonstrate how a similar organization may be achieved in the MSbar scheme. We study the relevance of these exponentiations in a two-loop analysis.Comment: 20 pages, JHEP style, no figure

    The effect of spring burning on competitive ranking of prairie species

    Full text link
    A common explanation for the changes in species abundance following a fire is a shift in competitive ranking. However, experimental tests have been inconsistent and generally do not support this explanation. I examined the competitive ability of an abundant C 4 grass, Andropogon gerardii , and a C 3 forb, Ratibida pinnata , in a prairie remnant in northern Ohio, USA, for each of three years following a spring burn in 1996. While the abiotic environment directly influenced both species similarly, relative competitive abilities in terms of growth changed markedly: in 1996 Andropogon was less inhibited by neighbors; in 1997 both Andropogon and Ratibida had similar competitive abilities; and in 1998 Ratibida was less inhibited by neighbors. This shift in competitive response ranking paralleled the changes in relative abundance for the two species. In contrast, the effect of neighbors on survival changed markedly over time but did not differ among the two species. Thus, fire may influence species abundance through changing species competitive response ranking, at least in terms of growth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72362/1/3236873.pd

    Initial-State Interactions in the Unpolarized Drell-Yan Process

    Get PDF
    We show that initial-state interactions contribute to the cos2ϕ\cos 2 \phi distribution in unpolarized Drell-Yan lepton pair production ppp p and ppˉ+X p \bar p \to \ell^+ \ell^- X, without suppression. The asymmetry is expressed as a product of chiral-odd distributions h1(x1,p2)×hˉ1(x2,k2)h_1^\perp(x_1,\bm{p}_\perp^2)\times \bar h_1^\perp(x_2,\bm{k}_\perp^2) , where the quark-transversity function h1(x,p2)h_1^\perp(x,\bm{p}_\perp^2) is the transverse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an {\it unpolarized} proton. We compute this (naive) TT-odd and chiral-odd distribution function and the resulting cos2ϕ\cos 2 \phi asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this model the function h1(x,p2)h_1^\perp(x,\bm{p}_\perp^2) equals the TT-odd (chiral-even) Sivers effect function f1T(x,p2)f^\perp_{1T}(x,\bm{p}_\perp^2). This suggests that the single-spin asymmetries in the SIDIS and the Drell-Yan process are closely related to the cos2ϕ\cos 2 \phi asymmetry of the unpolarized Drell-Yan process, since all can arise from the same underlying mechanism. This provides new insight regarding the role of quark and gluon orbital angular momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.Comment: 22 pages, 6 figure
    corecore