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1. Introduction

The predictive power of QCD for high–energy hadronic scattering observables rests upon

our ability to compute the corresponding partonic cross sections in perturbation theory.

Factorization theorems [1] assert that for many such cross sections mass divergences may

be subtracted, or mass–factorized, in a process–independent way, with any additional finite

subtraction constants defining the mass–factorization scheme.

In many cases, the predictive power of such perturbative series is imperiled by the

systematic occurrence of finite but large terms at higher orders. Resummation attempts

to restore predictive power by organizing classes of large terms to all orders, leaving a per-

turbative series for the remainder with much better convergence properties [2]. For cross

sections, the large terms almost always take the form of logarithms of ratios of kinematical

scales. In particular, threshold resummations [3, 4] organize logarithmic enhancements

singular at partonic threshold, resulting from imperfect cancellations between real and

purely virtual contributions to the cross section. As partonic threshold is approached,

these enhancements are parametrically guaranteed to increasingly dominate the perturba-

tive contributions to the cross section. Often, however, also constant terms, which do not

depend on scale ratios vanishing at threshold and which arise predominantly from purely

virtual diagrams, are numerically important in the cross section. Some of these large con-

stants originate from the same infrared singularities that give rise to the large logarithms,

and consequently are resummable.

Threshold resummations can be derived for partonic cross sections using the procedure

of refactorization: the Mellin transform of the cross section is expressed near threshold as a

product of well–defined functions, each organizing a class of infrared and collinear enhance-

ments. The refactorizations are valid up to corrections which are nonsingular at threshold,
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and thus suppressed by powers of the Mellin variable N at large N . Terms independent of

N can then be treated, in principle, by the same methods used to resum terms enhanced by

logarithms of N . For the Drell–Yan cross section and the deep–inelastic structure function

F2 such a refactorization was achieved in Ref. [3]. The resulting resummation of constant

terms established to all orders the earlier observation [5] that, in the DIS–scheme Drell–Yan

cross section, the largest constants are related to the ratio of the timelike Sudakov form

factor to its spacelike continuation. By solving an appropriate evolution equation [6], an

exponential representation for this form factor, and thus also for the ratio, was derived [7],

generalizing the observation of [5] to a full nonabelian exponentiation. Comparison with

exact two–loop results [8] showed in that case that N–independent contributions at two

loops are indeed dominated by the exponentiation of the one–loop result, combined with

running coupling effects [9, 10].

In this paper we refine this analysis for the DIS scheme, and we extend it to the

MS scheme. The challenge in the latter case lies in the fact that the finite subtraction

constants of this scheme are not related to a physical scattering process involving the

electromagnetic quark coupling at lowest order. Therefore, ratios of form factors do not

naturally occur in the MS scheme. The practical prevalence and relative simplicity of

the MS scheme would, however, make such an organization desirable. We will show that

the refactorization formalism of Ref. [3] leads to the exponentiation of all N–independent

contributions to the inclusive Drell–Yan cross section, both in the MS scheme and in the

DIS scheme. As a corollary, one may note that all constant terms in the MS –scheme non–

singlet deep–inelastic structure function F2 have been organized into an exponential form

as well. Furthermore, it is possible to organize the factorization procedure so that real and

virtual contributions are individually made finite; one can then disentangle various sources

of constants, such as π2 terms arising from unitarity cuts and similar terms arising from

expansions of phase–space related Γ functions.

One might object that there is no kinematic limit in which N–independent terms

dominate parametrically, so that an organization of such terms cannot be of much practical

use. In general, our view is that whenever all–order information is available one should

make use of it, at least to gauge the potential impact of generic higher order corrections on

the cross section at hand. One should bear in mind that the pattern of exponentiation, even

for N–independent terms, is highly nontrivial, and includes all–order information arising

from renormalization group evolution and the requirements of factorization; for example,

a considerable fraction of nonabelian effects arising in the Sudakov form factor at two

loops can be shown to follow from running coupling effects implemented on the (essentially

abelian) one–loop result. In the present case one could be bolder and argue that, since

all constants have been shown to exponentiate, using the exponentiated expression should

provide a better approximation to the exact answer. This is in fact the case for generic

values of higher order perturbative coefficents, even for asymptotic series such as those

arising in QCD. It cannot, however, be proven for any particular cross section, although it

works in practice for the cases that have been tested. At the very least, differences between

results for the physical cross section with or without the exponentiation of constant terms

can provide nontrivial estimates of errors due to (uncalculated) higher order corrections.
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Notice in passing that constant terms are not affected by the Landau pole and thus factor

out of the inverse Mellin transform needed to construct the physical cross section.

This paper is organized as follows. In the next Section we review the resummation

of the quark Sudakov form factor and its embedding in the DIS–scheme Drell–Yan cross

section. We extend the exponentiation in this scheme to include all constant terms. In

Section 3 we derive our result for the MS cross section. In Section 4 we compare the results

of the exponentiations to finite order calculations, while Section 5 contains our conclusions.

In an Appendix we present renormalization group studies of certain auxiliary functions.

2. Exponentiation in the DIS scheme

Consider the N–th moment of the partonic Drell–Yan cross section, taken with respect to

z = Q2/s, with Q the measured invariant mass and s the partonic invariant mass squared.

Mass factorization of this quantity, in the DIS scheme, is performed by simply dividing its

dimensionally regularized (d = 4 − 2ǫ), unsubtracted version by the square of the N–th

moment (taken with respect to the partonic Bjorken–x variable) of the non–singlet partonic

deep–inelastic structure function F2,

ω̂DIS(N) =
ω(N, ǫ)

[F2(N, ǫ)]
2 . (2.1)

While numerator and denominator are each infrared and collinear divergent, their ratio

is finite to all perturbative orders [1], so the ǫ dependence of the left hand side can be

neglected. Dependence on the hard scale Q and on the strong coupling αs(µ
2) will generally

be understood.

Let us begin by identifying how the Sudakov form factor arises in ω(N, ǫ), before mass

factorization, following the reasoning of Ref. [3]. One observes that near threshold (i.e. at

large N) ω(N, ǫ) can be refactorized according to

ω(N, ǫ) = |HDY|
2 ψ(N, ǫ)2 U(N) +O(1/N) . (2.2)

The ψ(N, ǫ) and U(N) functions contain the N dependence associated with initial state

radiation at fixed energy and coherent soft radiation, respectively. They are well–defined

as operator matrix elements, as given in Ref. [3], and are calculable in perturbation theory.

Both functions are gauge–dependent, but their product in Eq. (2.2) is not; implicitly, we

will be working in axial gauge. Using gauge invariance and renormalization group (RG)

arguments, one can show that both the parton distribution ψ(N, ǫ) and the eikonal function

U(N) obey evolution equations which can be solved near threshold in an exponential form,

up to corrections suppressed by powers ofN . The function |HDY|
2, collecting all hard–gluon

corrections, has noN dependence and may be determined by matching to exact calculations

order by order. Divergences are only present in the parton distribution function ψ(N, ǫ).

To identify the Sudakov form factor, it is useful [3] to separate virtual (V ) and real

(R) contributions to the resummed ψ and U functions, according to

ψ(N, ǫ) = R(ǫ) ψR(N, ǫ)

U(N) = UV (ǫ) UR(N, ǫ) , (2.3)
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where R(ǫ) is the real part of the residue of the quark two–point function in an axial gauge.

Note that this further factorization makes sense only because the functions ψ and U are

known to exponentiate to the present accuracy. Using the analysis of Section 8 of Ref. [3]

we can now write

ω(N, ǫ) = |HDY R(ǫ)
√
UV (ǫ)|

2 ψR(N, ǫ)
2 UR(N) +O(1/N)

= |Γ(Q2, ǫ)|2 ψR(N, ǫ)
2 UR(N, ǫ) +O(1/N) , (2.4)

so that all virtual contributions are expressed in terms of the electromagnetic quark form

factor Γ(Q2, ǫ). In fact, the residue of the quark propagator coincides with the virtual jet

function summarizing virtual collinear contributions to the form factor, while the square

root of the virtual eikonal function appearing in the cross section is responsible for the soft

enhancements of Γ(Q2, ǫ). We have thus indentified the dimensionally regularized time-

like Sudakov form factor in the refactorized, unsubtracted Drell–Yan cross section. Near

threshold, the only remaining contributions to the cross section come from real radiation,

and are summarized by the real parts of the ψ and U functions. At this point one can

already observe that ωDY(N, ǫ) exponentiates up to corrections suppressed by powers of N :

the exponentiation of the form factor in dimensional regularization was proven in Ref. [7],

while the exponentiation of ψR and UR to this accuracy was proven in Ref. [3]. Specifically,

the real part of the fixed–energy parton density ψR(N, ǫ) can be written as

ψR(N, ǫ) = exp

{∫ 1

0
dz

zN−1

1− z

∫ 1

z

dy

1− y
κψ

(
α
(
(1− y)2Q2

)
, ǫ
)}

. (2.5)

Similarly

UR(N, ǫ) = exp

{
−

∫ 1

0
dz

zN−1

1− z
gU

(
α
(
(1− z)2Q2

)
, ǫ
)}

. (2.6)

Note that in writing Eq. (2.5) and Eq. (2.6) one makes use of the fact that both functions

are renormalization–group invariant, since real emission diagrams do not have in this case

ultraviolet divergences. For the function ψR this is a consequence of the fact that it fixes the

energy of the final state, so that transverse momentum is also limited; for the function UR
it is a consequence of the structure of nonabelian exponentiation, as discussed in Ref. [3].

The functions κψ and gU are both finite at one loop in the limit ǫ→ 0: all IR and collinear

singularities are generated by the integrations over the scale of the d–dimensional running

coupling, which at one loop is given by

α

(
ξ2

µ2
, αs(µ

2), ǫ

)
= αs(µ

2)

[(
ξ2

µ2

)2ǫ

−
1

ǫ

{
1−

(
ξ2

µ2

)2ǫ
}

b0
4π
αs(µ

2)

]
−1

, (2.7)

and will often be abbreviated by α(ξ2), as in Eqs. (2.5) and (2.6).

A similar refactorization can be performed on the deep inelastic structure function F2

[3]. One finds

F2(N, ǫ) = |HDIS|
2 χ(N, ǫ)V (N)J(N) +O(1/N) . (2.8)

Here the parton distribution χ(N, ǫ) has the same soft and collinear singularities as the

one adopted for the Drell–Yan process, but, according to the general strategy of Ref. [3], it
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fixes a different component of the incoming parton momentum (the plus–component) and

is computed in a different axial gauge. It exponentiates in a form similar to Eq. (2.5), but

with a different function κχ appearing in the exponent. Note that κψ and κχ must (and do)

differ at one loop only by terms of order ǫ2, so that the ratio ψR/χR may remain finite. The

soft function V (N) summarizes the effects of coherent soft radiation in the DIS process,

and exponentiates in a form similar to Eq. (2.6). Finally, J(N) contains the effects of final

state collinear radiation emitted by the struck parton, and separately exponentiates in a

somewhat more elaborate form which will not be needed here. Separating real and virtual

contributions as above we find

F2(N, ǫ) = |HDIS|
2 |R(ǫ)VV (ǫ)|χR(N, ǫ)VR(N, ǫ)J(N) +O(1/N)

= |HDIS||Γ(−Q
2, ǫ)|χR(N, ǫ)

√
VV (ǫ)VR(N, ǫ)J(N) +O(1/N) . (2.9)

To this extent virtual contributions to F2 have been organized already in [3]. We now see

that all virtual contributions can be organized in terms of Γ(−Q2, ǫ), by observing that the

purely virtual part of the light–cone distribution χ is identical to the purely virtual part

of the outgoing jet J . Both consist essentially of the full two–point function for a lightlike

fermion. Note that both virtual jets in Eq. (2.9) are computed with the same gauge choice.

Gathering all virtual parts, one finds then

F2(N, ǫ) = |Γ(−Q2, ǫ)|2 χR(N, ǫ)VR(N, ǫ)JR(N, ǫ) +O(1/N) . (2.10)

Again, exploiting the results of Refs. [3, 7] this form of the refactorization is sufficient to

prove the exponentiation of the full cross section up to corrections suppressed by powers

of N . In fact F2 now involves, to this accuracy, only the form factor, and a product of

real functions which have been shown to exponentiate by using their respective evolution

equations.

This result can be further verified in the following way. A comparison of Eqs. (2.9)

and (2.10) implies that HDIS itself acquires an exponential form. In fact, an analysis along

the lines of [6] reveals that it may be expressed as

HDIS(Q
2) = ZH(αs, ǫ)

Γ(−Q2, ǫ)

S(0)(ǫ) G
(0)
2 (Q2, ǫ)

, (2.11)

where S(0) = S ZS and G
(0)
2 = G2Zq are the unrenormalized, dimensionally regularized

virtual soft function and virtual quark jet function appearing in the factorization of the

form factor, and where

ZH = ZS Z
2
q (2.12)

is the UV counterterm function for HDIS. The Sudakov form factor Γ does not require

a separate Z factor to cancel QCD UV divergences, by virtue of electromagnetic current

conservation. Now, each factor in Eq. (2.11) has an exponential form. For the virtual soft

function this was shown by Gatheral, Frenkel and Taylor in [11, 12]. The unrenormalized

virtual jet function G
(0)
2 (Q2, ǫ) obeys an evolution equation of the same form as the one

used for the full form factor [6], which can be explicitly solved in dimensional regularization
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by the same methods, using as initial condition the fact that all radiative corrections vanish

at Q2 = 0. G
(0)
2 (Q2, ǫ) must then exponentiate by itself. Finally, any Z factor arising in

multiplicative renormalization may be represented in a minimal scheme in terms of the

associated anomalous dimension γ = (1/2)d(lnZ)/d ln µ as

Zi = exp

{∫ Q2

0

dξ2

ξ2
γi

(
α
(
ξ2
))
}

, (2.13)

where again UV poles are generated by integration over the scale of the d–dimensional

coupling.

Turning to the evaluation of Eq. (2.1), we observe that it requires the ratio of Eq. (2.4)

and the square of either Eq. (2.9) or (2.10). In practice, the expression (2.9) is more

convenient than Eq. (2.10), because the resulting form (2.15) for ω̂DIS(N) is a product of

finite functions. Had one used instead the result in Eq. (2.10), the resulting expression for

ω̂DIS(N) would have involved cancelling divergences between the real and virtual parts.

Using then Eq. (2.9), and the additional information that UV (ǫ) = VV (ǫ), both being given

by pure counterterms to the same eikonal vertex, we can write

ω̂DIS(N) =
1

|HDIS|2

∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣
2(

ψR(N, ǫ)

χR(N, ǫ)

)2 U(N)

V 2(N)

1

J2(N)
. (2.14)

The exponentiation and RG running of the various factors of Eq. (2.14) are described

in detail in [3], with the exception of the ratio ψR/χR, which there was exponentiated

according to Eq. (2.5), but evaluated only at leading order. Running coupling effects on

this ratio are briefly discussed in an Appendix: they generate a contribution at NNL log

level at two loops, as well as further N–independent terms. Furthermore, we are now in a

position to exponentiate also the one–loop contribution to the matching function, setting

HDIS = exp (−αsCF /π). Gathering all factors, and formulating the answer according to

standard notation [4], our result for the hard partonic Drell–Yan cross section in the DIS

scheme takes the form

ω̂DIS(N) =

∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣
2

exp
[
FDIS(αs)

]

× exp

[∫ 1

0
dz

zN−1 − 1

1− z

{
2

∫ (1−z)2Q2

(1−z)Q2

dξ2

ξ2
A
(
αs(ξ

2)
)

− 2B
(
αs

(
(1− z)Q2

))
+D

(
αs

(
(1− z)2Q2

))
}]

+O(1/N) . (2.15)

Eq. (2.15) resums all terms in the perturbative expansion which contain enhancements of

the form αns log
kN , with k ≤ 2n, provided the perturbative expansions of the functions

A, B and D are known to the desired order in the strong coupling. The perturbative

coefficients of the functions A, B, D are in fact all known up to two loops [13, 14, 15]1.

1Concerning the three-loop coefficient A(3), the nf–dependent part is known exactly [15, 16], while good

numerical estimates exist for the nf–independent term [17].
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For example, expanding the functions involved as

f(αs) =

∞∑

k=1

f (k)
(αs
π

)k
, (2.16)

one needs

A(1) = CF , A(2) =
1

2

[
CACF

(
67

18
− ζ(2)

)
− nfCF

(
5

9

)]

B(1) = −
3

4
CF , D(1) = 0 . (2.17)

for resummation to next–to–leading logarithmic accuracy.

Eq. (2.15) also exponentiates N–independent terms, which have three sources: they

come from unitarity cuts, as in the analytic continuation of the form factor; or from phase

space integrations, since for example the parton distributions ψ and χ differ slightly in their

phase space measure; finally they arise from the Mellin transformation in the exponent,

which generates not only logarithms of N , but also contributions proportional to γE and

to ζ(n). Let us examine in more detail the first two classes of exponentiated constants.

As far as the ratio of form factors is concerned, one may use the result of Ref. [7] showing

that the absolute value of the ratio is finite to all orders and exponentiates. To illustrate

these results, note that the (timelike) Sudakov form factor Γ(Q2, ǫ) for the electromagnetic

coupling of a massless quark of charge eq is defined via

Γµ(p1, p2;µ
2, ǫ) ≡ 〈0|Jµ(0)|p1, p2〉 = −ie eq v(p2)γµu(p1) Γ

(
Q2, ǫ

)
, (2.18)

with Q2 = (p1 + p2)
2. Based on Refs. [18, 19, 20], it was shown in Ref. [7] that the

dimensionally regularized Sudakov form factor may be written as an exponential of integrals

over functions only of αs,

Γ(Q2, ǫ) = exp

{
1

2

∫ Q2

0

dξ2

ξ2

[
K (αs, ǫ)+G

(
α
(
ξ2
)
, ǫ
)
+

1

2

∫ µ2

ξ2

dλ2

λ2
γK

(
α
(
λ2

))
]}

. (2.19)

The function K in Eq. (2.19) is defined to consist of counterterms only, while G is finite

for ǫ → 0. Double logarithms of the hard scale Q arise from the double integral over the

anomalous dimension γK(αs). Note that within the framework of dimensional regulariza-

tion all integrals in Eq. (2.19) can be explicitly performed using the d–dimensional running

coupling [21], so that the form factor can be expressed in terms of RG–invariant analytic

functions of αs and ǫ to any order.

Using Eq. (2.19) one can derive a particularly simple expression for the absolute value

of the ratio appearing in Eq. (2.15). One finds
∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣ = exp

{∣∣∣∣
i

2

∫ π

0

[
G
(
α
(
eiθQ2

)
, ǫ
)
−

i

2

∫ θ

0
dφ γK

(
α
(
eiφQ2

))]∣∣∣∣
}
. (2.20)

Performing the scale integrals, at the two–loop level this yields
∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣
2

= 1 +
αs(Q)

π

3ζ(2)γ
(1)
K

2
(2.21)

+

(
αs(Q)

π

)2 [
9

8
ζ2(2)

(
γ
(1)
K

)2
+

3

4
ζ(2)b0G

(1)(0) +
3

2
ζ(2)γ

(2)
K

]
,
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where

γ
(1)
K = 2CF ,

G(1)(ǫ) = CF

(
3

2
−
ǫ

2
[ζ(2)− 8] + ǫ2

[
8−

3

4
ζ(2)−

7

3
ζ(3)

]
+O(ǫ3)

)
,

γ
(2)
K = CACF

(
67

18
− ζ(2)

)
− nfCF

(
5

9

)
= 2A(2), (2.22)

while b0 = (11CA− 2nf )/3. The anomalous dimension γK is the “cusp” anomalous dimen-

sion of a Wilson line in the MS renormalization scheme [22, 23, 24].

Eq. (2.21) illustrates the potential relevance of exponentiation ofN–independent terms:

first of all, the two–loop contribution is numerically dominated by one–loop effects, both

through exponentiation and the running of the coupling (the first two terms of the two–

loop coefficient numerically make up roughly three quarters of the total); furthermore, for

this particular ratio, genuine two–loop effects are given only in terms of γ
(2)
K , thus they are

UV–dominated and much simpler to calculate than the full form factor.

Finally, the function FDIS(αs) collects constant terms arising from phase space inte-

grations in the various functions involved in the factorization, as well as from the exponen-

tiation of the matching function HDIS. One finds at one loop

F
(1)
DIS = CF

(
1

2
+ ζ2

)
, (2.23)

while at two loops some terms can be predicted by taking into account the running of the

coupling, which yields

F
(2)
DIS = −

3

16
CF b0 (4 + ζ(2)− 2ζ(3)) + δF

(2)
DIS . (2.24)

These two–loop contributions should not be taken too literally since, as indicated in

Eq. (2.24), there is at this level an uncalculated contribution δF
(2)
DIS arising from a pure

two–loop calculation, which could easily overwhelm the effects which have been included.

Further discussion of the impact of these two–loop effects is given in Section 4.

3. Exponentiation in the MS scheme

As remarked in the introduction, one should not expect that the constants associated with

the Sudakov form factor in the MS –scheme Drell–Yan cross section can be organized as in

the previous Section, in terms of a simple ratio of the timelike to spacelike versions of the

same form factor. The reason, of course, is that the MS quark distribution function is not

directly related to a physical process involving quark electromagnetic scattering at lowest

order. We will show that it is nevertheless possible to organize these constants in a closely

related manner.

Mass factorization of the Drell–Yan cross section in the MS scheme is straightforward

in moment space: one simply divides ω(N, ǫ) by φ2
MS

(N, ǫ), the square of the MS quark
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distribution, defined by

φMS (N, ǫ) = exp

[∫ Q2

0

dξ2

ξ2

{∫ 1

0
dz

zN−1 − 1

1− z
A
(
α
(
ξ2
))

+Bδ
(
α
(
ξ2
))

}]
+O(1/N) ,

(3.1)

with A the same function appearing in Eq. (2.15), while Bδ is the virtual part of the non–

singlet quark–quark splitting function (Bδ(α) = B(α) at one loop). As appropriate for

an MS parton density, one can easily verify that φMS (N, ǫ) in Eq. (3.1) is a series of pure

counterterms. Q is the factorization scale, which for simplicity throughout this paper we

set equal to the Drell–Yan invariant mass 2. We will now factor this density into virtual

and real parts

φMS (N, ǫ) = φV (ǫ) φR(N, ǫ) , (3.2)

in such a way that in the (finite) ratio

ω̂MS (N) ≡
ω(N, ǫ)

φMS (N, ǫ)2
=

(
|Γ(Q2, ǫ)|2

φV (ǫ)2

) (
ψR(N, ǫ)

2 UR(N, ǫ)

φR(N, ǫ)2

)
+O(1/N) (3.3)

the ratios of virtual functions and of real functions, displayed in the large brackets, are

separately finite. To be precise, the factorization in Eq. (3.2) is uniquely defined by the

following criteria: first, the ratio of virtual functions must be finite; second, as we are

factorizing a series of pure counterterms, we would like also φV (ǫ) to consist only of poles.

The real part φR(N, ǫ) is then defined by Eq. (3.2). Note that φV (ǫ) defined in this way

is process–dependent, in contrast to φMS (N, ǫ); note also that, while φMS has only simple

poles of collinear origin, the real and virtual contributions will have cancelling double poles.

We will now analyze separately the real and virtual contributions to the cross section.

3.1 Cancellation of virtual poles

The timelike Sudakov form factor has imaginary parts, which are the source of the largest

contributions to the ratio in Eq. (2.20), while the MS distribution is real. We can thus

simplify our analysis by writing

|Γ(Q2, ǫ)|2

φV (ǫ)2
=

∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣
2 (

Γ(−Q2, ǫ)

φV (ǫ)

)2

. (3.4)

The benefit of this lies in the fact that the first factor on the right hand side is finite, and

already explicitly resummed in Eq. (2.20). The second factor, on the other hand, is purely

real. Inspired by the explicit expression for the form factor, Eq. (2.19), we try the ansatz

φV (ǫ) = exp

{
1

2

∫ Q2

0

dξ2

ξ2

[
K (αs, ǫ) + G̃

(
α
(
ξ2
))

+
1

2

∫ µ2

ξ2

dλ2

λ2
γK

(
α
(
λ2

))
]}

, (3.5)

which has the same structure as the Sudakov form factor in Eq. (2.19), with the difference

that G̃ has no order ǫ terms.

2It is straightforward to repeat the analysis below keeping these scales different.
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We will now show, to all orders in the strong coupling, that the perturbative coefficients

of the function G̃ can be chosen so as to render Eq. (3.4) finite, and we will provide for them

an explicit construction. Since the first ratio on the right hand side of Eq. (3.4) is finite, it

is sufficient to prove the cancellation of poles for the second ratio, Γ(−Q2, ǫ)/φV (ǫ). First

of all, one observes that all divergences arising from the terms K and γK manifestly cancel

between Γ(−Q2, ǫ) and φV (ǫ), since they come from limits of integration independent of

the particular energy scale considered. Hence divergences could only be generated by the

G terms. To show that those terms can be made finite as well, we begin by writing

G (αs, ǫ) =

∞∑

n=1

∞∑

m=0

G(n)
m ǫm

(αs
π

)n
, (3.6)

and by noting that the integration over the energy scale can be rewritten as one over the

running coupling making use of

dµ2

µ2
= 2

dα

β (α, ǫ)
= −

1

ǫ

dα

α

1

1 + 1
4ǫ

∞∑
m=1

bm−1

(
α
π

)m . (3.7)

To proceed, let us define the truncated perturbative expansions for the various functions

involved by

β̂(M)(αs, ǫ) ≡ 1 +
1

4ǫ

M∑

n=1

bn−1

(αs
π

)n
,

G(M) (αs, ǫ) ≡

M∑

n=1

∞∑

m=0

G(n)
m ǫm

(αs
π

)n
, (3.8)

G̃(M) (αs) ≡
M∑

n=1

G̃(n)
(αs
π

)n
.

Finally, define

R
(p)
(M)(αs, ǫ) ≡

G(M) (αs, ǫ)− G̃(M) (αs)

β̂(M−1)(αs, ǫ)
, (3.9)

where the index (p) denotes the fact that the perturbative expansion for the ratio R is

truncated at order αps.

Writing down the integrands of both the numerator and the denominator of the second

ratio in Eq. (3.4) and keeping in mind the overall factor of 1/ǫ from Eq. (3.7), one can

easily formulate our goal in terms of R. We need to show that G̃ can be chosen so that

R
(M)
(M)(αs, ǫ) = O(ǫ) , ∀M . (3.10)

The proof proceeds by induction. First of all, one sees immediately that it is possible to get

R
(1)
(1)(αs, ǫ) = O(ǫ), simply by choosing G̃(1) = G

(1)
0 . Next we assume that Eq. (3.10) holds

for some fixed order M in perturbation theory for chosen values of G̃(n), up to n =M , and

show that G̃(M+1) may be chosen so that Eq. (3.10) holds also to order M + 1.
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To isolate the terms of order αM+1
s in R

(M+1)
(M+1), we use the identity

1

β̂(M)(αs, ǫ)
=

1

β̂(M−1)(αs, ǫ)
−
β̂(M)(αs, ǫ)− β̂(M−1)(αs, ǫ)

β̂(M)(αs, ǫ)β̂(M−1)(αs, ǫ)
. (3.11)

Substituting Eq. (3.11) into the definition of R
(M+1)
(M+1), and neglecting all terms O(αM+2

s )

and higher, as well as terms which are explicitly O(ǫ), one finds

R
(M+1)
(M+1)(αs, ǫ) = R

(M+1)
(M) (αs, ǫ) +

(αs
π

)M+1
(
G

(M+1)
0 −

bM−1

4
G

(1)
1 − G̃(M+1)

)
. (3.12)

The theorem is now proven if one can show that R
(M+1)
(M) has no poles in ǫ, since a constant

at O(αM+1
s ) can be removed by suitably defining G̃(M+1). To see that this is the case, note

that R
(M+1)
(M) (αs, ǫ) must, by the induction hypothesis, be of the form

R
(M+1)
(M) (αs, ǫ) =

M∑

m=1

∞∑

l=1

c
(m)
l ǫl

(αs
π

)m
+

(αs
π

)M+1
∞∑

p=p0

dpǫ
p . (3.13)

Multiplying this times β̂(M−1)(αs, ǫ), we must get back the numerator of R
(M+1)
(M) , up to

O(αM+2
s ) corrections, namely

[
1 +

1

4ǫ

M−1∑

n=1

bn−1

(αs
π

)n
]
·

[
M∑

m=1

∞∑

l=1

c
(m)
l ǫl

(αs
π

)m
+

(αs
π

)M+1
∞∑

p=p0

dpǫ
p

]
=

=
M∑

n=1

∞∑

m=0

G(n)
m ǫm

(αs
π

)n
−

M∑

n=1

G̃(n)
(αs
π

)n
+O(αM+2

s ) . (3.14)

Now, the right hand side has no poles in ǫ, and no term of order αM+1
s , thus on the left hand

side all poles and all terms of order αM+1
s must cancel. If p0 < 0, on the other hand, one

will generate a term of the form d−1(αs/π)
(M+1)(1/ǫ) on the left hand side, which cannot

be cancelled: in fact, note that the first sum in R
(M+1)
(M) starts at O(ǫ) by the induction

hypothesis, and β̂M−1 has only a simple pole in ǫ. We conclude that p0 ≥ 0, as desired.

To find explicit expressions one has to implement the observation that the coefficient

of {(αs/π)
M+1 , ǫ0} in R

(M+1)
(M+1) must vanish. One verifies that G̃(M+1) is given by the

coefficient of {(αs/π)
M+1 , ǫ0} in the ratio

R(M+1)(αs, ǫ) ≡
G(M+1) (αs, ǫ)

β̂(M)(αs, ǫ)
. (3.15)

Explicitly,

G̃(M+1) = G
(M+1)
0 −

b0
4
G

(M)
1 −

b1
4
G

(M−1)
1 +

b20
16
G

(M−1)
2 −

b2
4
G

(M−2)
1 +

b0b1
8
G

(M−2)
2 +. . . (3.16)
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3.2 Real emission contributions

The complete expression for the MS –scheme DY cross section in the present framework is

given by

ω̂MS (N) =

∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣
2 (

Γ(−Q2, ǫ)

φV (ǫ)

)2
[
UR(N, ǫ)

(
ψR(N, ǫ)

φR(N, ǫ)

)2
]
, (3.17)

where the factor in square brackets arises from real gluon emission. Each function appearing

in the real emission contribution exponentiates: ψR and UR according to Eqs. (2.5) and

(2.6), respectively, while φR is defined as the ratio of Eq. (3.1) to Eq. (3.5). Renormalization

group arguments can be applied to each function, in d = 4 − 2ǫ dimensions, as described

in the Appendix. It is interesting to notice that running the coupling in d dimensions

generates poles at two loops in the ratio URψR/φR, although the input at one loop is finite.

The ratio must however be finite to all orders, as a consequence of the factorization theorem,

together with the finiteness of the virtual contributions demonstrated above. This poses

constraints on the two–loop coefficients of the functions involved, as described in more

detail in Section 4, tying together real and virtual contributions to the cross section.

Collecting and organizing the exponential expressions of the real emission functions,

one can cast Eq. (3.17) in the standard form

ω̂MS (N) =

∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣
2 (

Γ(−Q2, ǫ)

φV (Q2, ǫ)

)2

exp
[
FMS (αs)

]

× exp

[∫ 1

0
dz

zN−1 − 1

1− z

{
2

∫ (1−z)2Q2

Q2

dµ2

µ2
A
(
αs(µ

2)
)

+ D
(
αs

(
(1− z)2Q2

))
}]

+O(1/N) . (3.18)

A one loop calculation, with the inclusion of running coupling effects, yields

log

(
Γ(−Q2, ǫ)

φV (Q2, ǫ)

)
=
αs
π
CF

(
ζ(2)

4
− 2

)
+

(αs
π

)2
[
CF b0
2

(
1−

3

32
ζ(2)−

7

24
ζ(3)

)
+ δR(2)

]
,

FMS (αs) =
αs
π
CF

(
−
3

2
ζ(2)

)
+

(αs
π

)2
[
−
1

4
b0CF

(
1−

3

8
ζ(2)−

7

4
ζ(3)

)
+ δF

(2)

MS

]
, (3.19)

where δR(2) and δF
(2)

MS
are genuine two–loop contributions, formally unrelated to running

coupling effects. Note that the function D in Eq. (3.18) is the same as in Eq. (2.15):

a non–trivial statement, due to the fact that such a function, summarizing wide angle

soft radiation, can be taken to vanish in the threshold–resummed deep–inelastic structure

function [15, 25, 26, 27].

We can now turn to a discussion of the relevance of the exponentiation of constants in

the two schemes, as tested at the two–loop level.

4. Usage and limits of exponentiation

It is clear that the results we have derived on the exponentiation of N–independent terms

do not have the predictive strength of the standard resummation of threshold logarithms.
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In that case, in fact, the pattern of exponentiation is highly nontrivial, and the perturbative

coefficients of entire classes of logarithms can be exactly predicted to all perturbative orders

performing just a low order calculation. In the present case, even though constant terms

exponentiate, the determination of the exact value of the N–independent contribution at,

say, g loops, always requires a g–loop calculation, albeit in some cases a simplified one.

It remains true, however, that exponentiation and running coupling effects generate

contributions to all orders which originate from low–order calculations. These contributions

are an easily computable subset of higher order corrections, and it is reasonable to use them

to estimate the full impact of higher orders. Specifically, given a g–loop calculation of one

of the cross sections we have discussed, one can extract the value of the various functions

appearing in the exponent to that order, and then use exponentiation and RG running to

estimate the (g+1)–loop result. Given the existing results at two loops [28, 29], one could

construct an estimate of the three–loop partonic cross section. Before embarking in such a

calculation, it is however advisable to test the case g = 1, i.e. to use the two–loop results

to verify the reliability of the method, by comparing the exact results with the estimate

obtained by exponentiating the one–loop calculation and letting the couplings run. To this

end, we can expand the partonic cross section in scheme s, ω̂s(N) as

ω̂s(N) =

∞∑

p=0

ω(p)
s (N)

(αs
π

)p
. (4.1)

Next, we identify the coefficients of different powers of logN , by writing

ω(p)
s (N) =

2p∑

i=0

ω
(p)
s,i (logN + γE)

i . (4.2)

So far we are dealing with the exact cross sections. Let now ω̃
(p)
s,i be the estimate for ω

(p)
s,i

obtained by evaluating the exponent exactly at p−1 loops, adding running coupling effects,

and expanding the result to order p. One can define the deviation

∆ω
(p)
s,i ≡

ω
(p)
s,i − ω̃

(p)
s,i

ω
(p)
s,i

. (4.3)

In computing our estimates for the DIS scheme, we will employ Eq. (2.15), with the one–

loop results taken from Eq. (2.17), Eq. (2.21) and Eq. (2.23). Furthermore, since we are

taking into account running coupling effects, we will include the terms proportional to b0 in

Eqs. (2.24) and (A.8). As far as the MS scheme is concerned, we will make use of Eq. (3.18),

together with Eq. (3.19), with all purely two–loop contributions defined to vanish. Exact

results are taken from Refs. [28, 29], focusing on “soft and virtual” contributions (all other

contributions are suppressed by powers of N at large N). To get numerical results we focus

on SU(3) and set nf = 5. The results for the deviations ∆ω
(2)
s,i in the two schemes are given

in Table 1. To gain a little further insight, we also separate the contributions proportional

to the possible combinations of group invariants arising at two loops (i.e. C2
F , CACF and

nfCF ), and display the results in Table 2 for the powers of logN which do not lead to
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i 0 1 2 3 4

DIS 0.26 1.17 0.13 0 0

MS - 0.69 1.79 0.33 0 0

Table 1: The deviations ∆ω
(2)
s,i , as defined in the text, for the DIS and MS schemes.

exact agreement (i.e. i = 0, 1, 2). Here we give the coefficients separately for ω
(2)
s,i and

ω̃
(2)
s,i for each scheme, since some of the exact coefficients vanish, so that the corresponding

deviations as given in Eq. (4.3) are ill–defined.

DIS MS

estimate exact estimate exact

coefficients of C2
F

i = 0 38.06 39.03 3.33 1.79

i = 1 - 13.09 - 14.41 0 0

i = 2 9.85 9.85 5.16 5.16

coefficients of CACF

i = 0 5.63 18.12 13.12 6.82

i = 1 9.83 - 0.25 1.51 - 0.47

i = 2 - 0.69 0.35 0 2.08

coefficients of nfCF

i = 0 - 1.02 - 4.40 - 2.38 - 0.80

i = 1 - 1.79 0.35 - 0.27 - 0.52

i = 2 0.12 - 0.15 0 - 0.56

Table 2: Comparison between estimates from exponentiation and exact results at two loops,

presented separately for different colour structures, both in the DIS and MS schemes.

Several remarks are in order. From Table 1, we observe that, as expected, leading

(i = 4) and next–to–leading (i = 3) logs at two loops are exactly predicted by one–loop

results and running coupling effects. Similarly, also as expected, NNL logarithms (in this

context i = 2) have a small discrepancy which is entirely traceable to the two–loop cusp

anomalous dimension γ
(2)
K . At the level of N–independent terms (i = 0), the agreement is

quite reasonable, and in fact rather satisfactory in the DIS scheme, where exponentiation

accounts for three quarters of the exact answer.

Single log results, on the other hand, are much less satisfactory, displaying a discrep-

ancy larger than 100% in both schemes. The reasons for this discrepancy are slightly

different in the two schemes, but they highlight the same generic problem. In the DIS

scheme, as discussed in the Appendix, running coupling effects in the ratio of parton dis-

tributions ψ/χ generate a single log term with the wrong sign with respect to the exact

result. This term must then be compensated by contributions which we would describe as

‘genuine two–loop’, which as a result display a rough proportionality to b0.

This phenomenon could be described as an ‘excess of factorization’, in the following
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sense: to achieve the accuracy and generality of Eq. (2.15) it is necessary to introduce

several functions, depending on different scales. Not all of these dependencies, however,

are physical, and there may be (in fact there are) large cancellations in the scale dependence

between different functions. This fact has been observed in the past: Catani and Trentadue

pointed it out in Ref. [30], and more recently a similar observation was made by Gardi

and Roberts in Ref. [27]. As a consequence, approximate coefficients that are dominated

by running coupling effects, but not completely determined, may turn out to be quite

inaccurate.

In the MS scheme, the same kind of cancellation is displayed in a different way: there,

as described in more detail below, one may use the constraint imposed by the finiteness

of the real emission contributions to reexpress the single log coefficient in terms of purely

virtual functions, and in the process the weight of running coupling effects changes con-

siderably. Again, this indicates that computed running coupling effects may easily be

compensated by unevaluated two–loop contributions.

Finally, one may observe in Table 2 that abelian (C2
F ) contributions exponentiate with

impressive accuracy, particularly in the DIS scheme. The slight superiority of the DIS

scheme in this regard appears to be a fairly generic feature in Tables 1 and 2, perhaps to

be ascribed to the more direct physical interpretation of the subtractions, as compared to

the MS scheme.

To conclude, we would like to point out that the methods of exponentiation we have

outlined may be used not only for numerical estimates, but also to obtain, or test, analytical

results. Specifically, since all functions employed have precise diagrammatic definitions, the

computation of certain coefficients at two loops may be simplifed using this approach, as

compared to a full calculation of the cross section. Further, the factorization into separately

finite real and virtual contributions leads to constraints connecting different coefficients, so

that different two–loop results can be nontrivially connected. To give an example, consider

Eq. (3.17). There, the finiteness of the ratio URψR/φR at two loops imposes constraints

tying together real and virtual contributions to the cross section (recall that φR is defined

as φMS /φV ). Using the methods outlined in the Appendix and imposing the cancellation

of double poles in the ratio of real functions, one may verify that the two–loop coefficient

of log2N in ω̂MS (N) must equal the two–loop cusp anomalous dimension γ
(2)
K , as is well

known. Further, imposing the cancellation of single poles in the same ratio, one finds

that the value of the function D at two loops is completely determined by purely virtual

diagrams. One finds

D(2) =
3

4
ζ(2)b0CF + 4B

(2)
δ − 2G̃(2) , (4.4)

where B
(2)
δ , the two–loop virtual part of the non–singlet quark–quark splitting function [31,

32], is given by

B
(2)
δ =

3

2
C2
F

(
1

16
−

1

2
ζ(2) + ζ(3)

)
+
CACF

4

(
17

24
+

11

3
ζ(2)− 3ζ(3)

)
−
nfCF
6

(
1

8
+ ζ(2)

)
,

(4.5)

while the second order contribution to the function G̃ can be determined via Eqs. (3.16)

and (2.19), by matching the resummed expression for Γ(Q2, ǫ) to the explicit results for the
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dimensionally regularized one– and two–loop Sudakov form factors, as given for example

in Ref. [8, 33, 34]. We find

G̃(2) = G
(2)
0 −

b0
4
G

(1)
1 ,

G
(2)
0 = 3C2

F

(
1

16
−

1

2
ζ(2) + ζ(3)

)
−
CACF

4

(
13−

11

3
ζ(2)−

2545

108
ζ(3)

)

−
nfCF
6

(
209

36
+ ζ(2)

)
, (4.6)

G
(1)
1 = CF

(
4−

1

2
ζ(2)

)
.

We have thus rederived the coefficient D(2), obtained earlier in Refs.[13, 14] through match-

ing to the two–loop cross sections of Ref. [28, 29], by using only information from purely

virtual contributions.

5. Conclusions

We have shown how to organize all constants in the N–th moment of the Drell-Yan cross

section in the DIS and MS schemes into exponential forms. Our MS –scheme result has

the special feature that real and virtual contributions are separately finite. This organiza-

tion rests crucially upon the refactorization properties of the unsubtracted Drell–Yan cross

section and, for the DIS scheme, of the non–singlet deep–inelastic structure function, near

threshold [3]. For the MS scheme the organization involves the construction of an exponen-

tial series of pure counterterms that cancels all divergences in the spacelike Sudakov form

factor. We have proven this cancellation to all orders. We emphasize that our arguments

imply exponentiation to the same degree of accuracy for the MS –scheme DIS cross section

F̂2(N), although we have not given a detailed evaluation in that case.

Although exponentiation of N–independent terms does not have the same degree of

predictive power as the resummation of threshold logarithms, it can be used with some

degree of confidence to gauge the impact of higher order corrections to fixed order cross

sections: we found that N–independent contributions at two loops are reasonably well

approximated by the exponentiation of one–loop results. The refactorization approach

also leads to nontrivial connections between real and virtual contributions to the cross

section, which can be used to test or in some cases simplify finite order calculations. On

the negative side, one cannot in general trust running coupling effects to give by themselves

a good approximation of two–loop results, unless the various scales at which the couplings

are evaluated are tied to the physical scales of the full cross section.

It might be interesting to make full use of the available two–loop information for the

Drell–Yan and DIS cross sections to provide an estimate of three–loop effects, along the lines

of Section 4. We prefer to regard the techniques presented here, which extend threshold

resummations to a new class of terms, as a step towards the analysis of yet other classes of

perturbative corrections which might be expected to exponentiate. A natural example is

given by threshold logarithms suppressed by an extra power of the Mellin variable N , which
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have recently been analized in the case of the longitudinal DIS structure function FL(N) in

Refs. [35, 36], and were shown to be phenomenologically important in Ref. [37]. Another

possible extension of our work is of course the study of N–independent contributions to

more complicated hard cross sections, involving more colored particles, along the lines of

Refs. [38] and [39]: this would be an ingredient towards a precise resummed determination

of such cross sections, which would be of considerable phenomenological interest for present

and future hadron colliders.
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Appendix

Let us briefly discuss the application of renormalization group techniques to unconven-

tional parton distributions such as the functions ψ(N, ǫ) and χ(N, ǫ) described in the text,

specifically focusing on the contributions involving real gluon emission. The techniques of

Ref. [3] lead to an expression of the form

ψR(N, ǫ) = exp

{∫ 1

0
dz

zN−1

1− z

∫ 1

z

dy

1− y
κψ

(
(1− y)Q

µ
,αs(µ

2), ǫ

)}
+O (1/N) , (A.1)

and similarly for χ. The functions ψR and χR are both renormalization group invariant

(i.e. their respective anomalous dimensions vanish) to this accuracy, for slightly different

reasons: ψR cannot have overall UV divergences because its phase space is restricted to

fixed total energy emitted in the final state. This automatically restrict also transverse

momentum, so the phase space integration is UV finite. χR, on the other hand, has a

phase space restricted to fixed total light–cone momentum fraction, so that in principle

it may have UV divergences arising from transverse momentum integrations. These di-

vergences are in fact present, however it can be shown that, at least at one loop and in

the chosen axial gauge, these divergences are suppressed by powers of N . Note that this

is not in contradiction with the fact that the divergent terms for any quark distribution

must be proportional to the Altarelli–Parisi kernel. It simply means that the corresponding

divergences are of IR–collinear origin for the distributions at hand.

The consequence of this statement for the functions κψ and κχ is that

(
µ
∂

∂µ
+ β (ǫ, αs)

∂

∂αs

)
κψ

(
(1− y)Q

µ
,αs(µ

2), ǫ

)
= 0 , (A.2)

where β (ǫ, αs) is the β function in d = 4−2ǫ. An identical equation is obeyed by κχ. Such

equations can be solved perturbatively to determine the dependence of the distributions on
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the momentum scale. Consider again for example κψ, and let ξ ≡ (1− y)Q/µ. Expanding

κψ (ξ, αs, ǫ) =

∞∑

n=1

(αs
π

)n
κ
(n)
ψ (ξ, ǫ) , (A.3)

one easily finds that at the two loop level the coefficients must be of the form

κ
(1)
ψ (ξ, ǫ) = κ

(1)
ψ,0 (ǫ) ξ

−2ǫ ,

κ
(2)
ψ (ξ, ǫ) = κ

(2)
ψ,0 (ǫ) ξ

−4ǫ +
b0
4ǫ
κ
(1)
ψ,0 (ǫ) ξ

−2ǫ
(
ξ−2ǫ − 1

)
. (A.4)

explicit evaluation at one loop [3] yields

κ
(1)
ψ,0 (ǫ) = 2CF (4π)ǫ

Γ(2− ǫ)

Γ(2− 2ǫ)
,

κ
(1)
χ,0 (ǫ) = 2CF (4π)ǫ Γ(2 + ǫ) cos (πǫ) . (A.5)

As observed in Section 2, the finiteness of the ratio ψR/χR, which is a consequence of fac-

torization, requires that κ
(1)
ψ,0(ǫ)−κ

(1)
χ,0(ǫ) = O(ǫ2), since the double integration in Eq. (A.1)

generates a double pole. In fact, upon redefing µ according to the MSprescription to absorb

factors of log(4π) and γE ,

κ
(1)
ψ,0 (ǫ)− κ

(1)
χ,0 (ǫ) = 2CF ǫ

2
[
2 + ζ(2) + ǫ (4 + ζ(2)− 2ζ(3)) +O(ǫ2)

]
. (A.6)

One can go slightly further and observe that the finiteness of the ratio ψR/χR also constrains

the form of the pure two–loop contribution to κψ and κχ, given by the functions κ
(2)
ψ,0(ǫ)

and κ
(2)
χ,0(ǫ). Specifically, inserting Eqs. (A.3) and (A.4) into Eq. (A.1), and doing the same

for χR, one finds that the ratio ψR/χR will develop a simple pole in ǫ at two loops, unless

κ
(2)
ψ,0 (ǫ)− κ

(2)
χ,0 (ǫ) =

3

2
CF b0ǫ (2 + ζ(2)) + ǫ2δκ

(2)
2 +O

(
ǫ3
)
, (A.7)

in analogy with Eq. (A.6), with δκ
(2)
2 a constant arising at two loops to be used below.

This constraint also fixes the coefficient of a contribution to the ratio proportional to logN

at two loops, i.e. at NNL level. To be precise one finds
(
ψR(N, ǫ)

χR(N, ǫ)

)2

= exp

[
αs
π
CF (2 + ζ(2)) +

(αs
π

)2
(
1

8
δκ

(2)
2 +

1

2
CF b0 (2 + ζ(2)) (logN + γE)

−
3

16
CF b0 (4 + ζ(2)− 2ζ(3))

)
+O

(
ǫ,

1

N
,α3

s

)]
. (A.8)

Once again, the contributions arising at two loops should be taken with a grain of salt when

constructing the full cross section. It is true in fact that in this way we have determined the

leading logarithmic contribution to this particular ratio, however in the full cross section

there are competing logN terms arising at two loops from other functions, and in fact in

the present case the logarithmic term in Eq. (A.8) goes in the wrong direction to ‘predict’

NNL logarithms at two loops, as discussed in the text. Similarly, there is no guarantee that

the uncalculated constant δκ
(2)
2 will not overwhelm the running coupling effects explicitly

displayed in Eq. (A.8).
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