5,958 research outputs found
MARKET REFORMS VERSUS STRUCTURAL REFORMS IN RURAL CHINA
This paper adds to the debate on the impact of market reforms versus structural reforms in explaining agricultural output growth in China. A multiple-output stochastic frontier and a technical inefficiency equation are estimated using provincial data on the rural economy from 1986 to 1995. Grain self-sufficiency policies and incomplete market reforms in the 1980s and 1990s led to allocative inefficiency. Agricultural disinvestment shrunk the production frontier and the fragmentation of land holdings reduced technical efficiency. China's rural economic reform is far from being complete.Agricultural and Food Policy, O47, Q12, Q15,
Priorities and Preconditions for Successful Investment in Smallholder Agriculture in Sub-Saharan Africa
In the past couple of years, there has been resurgence in interest in smallholder agriculture as a potential driver for growth and poverty reduction in Sub-Saharan Africa. However, there remains considerable skepticism as to whether public investment in smallholder agriculture will lead to the desired growth and poverty reduction, given a general pessimism about "absorptive capacity" for (public) investment in Africa, the perception of failure of past agricultural investment and the observation that current conditions are unconducive to agricultural growth in Africa. This paper combines experiences of two UK-based NGOs dedicated to promoting smallholder agriculture and strengthening rural livelihoods in Africa with insights from academic literature on African agriculture and rural markets to set out an agenda for investment in smallholder agriculture in Africa. It identifies priorities for public investment, but also key issues related to "absorptive capacity" that need to be addressed if such investment is to succeed in generating agricultural growth and poverty reduction. Particular emphasis is placed on: a) investment in human and organisational capacity of smallholder farmers; b) investment in coordinated service provision to equip producers to respond to evolving market opportunities; c) the process of developing and implementing credible agricultural development strategies at both national and local level, and; d) reform of Ministries of Agriculture to support this process.International Development,
LABOR STRIKES AND THE PRICE OF LETTUCE
This paper examines the economic impact of the 1979 labor strike against lettuce producer-shippers in the Imperial Valley of California. The theory presented suggests that formidable problems are encountered by agricultural labor unions in obtaining higher wages for farm workers. During the 1979 strike, ironically the returns to many of the lettuce producers in the Imperial Valley increased substantially.Demand and Price Analysis, Labor and Human Capital,
Isoprene oxidation by the gram-negative model bacterium variovorax sp. WS11
Plant-produced isoprene (2-methyl-1,3-butadiene) represents a significant portion of global volatile organic compound production, equaled only by methane. A metabolic pathway for the degradation of isoprene was first described for the Gram-positive bacterium Rhodococcus sp. AD45, and an alternative model organism has yet to be characterised. Here, we report the characterisation of a novel Gram-negative isoprene-degrading bacterium, Variovorax sp. WS11. Isoprene metabolism in this bacterium involves a plasmid-encoded iso metabolic gene cluster which differs from that found in Rhodococcus sp. AD45 in terms of organisation and regulation. Expression of iso metabolic genes is significantly upregulated by both isoprene and epoxyisoprene. The enzyme responsible for the initial oxidation of isoprene, isoprene monooxygenase, oxidises a wide range of alkene substrates in a manner which is strongly influenced by the presence of alkyl side-chains and differs from other well-characterised soluble diiron monooxygenases according to its response to alkyne inhibitors. This study presents Variovorax sp. WS11 as both a comparative and contrasting model organism for the study of isoprene metabolism in bacteria, aiding our understanding of the conservation of this biochemical pathway across diverse ecological niches
Deep dielectric charging of regolith within the Moon\u27s permanently shadowed regions
Abstract Energetic charged particles, such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs), can penetrate deep within the lunar surface, resulting in deep dielectric charging. This charging process depends on the GCR and SEP currents, as well as on the regolith\u27s electrical conductivity and permittivity. In permanently shadowed regions (PSRs) near the lunar poles, the discharging timescales are on the order of a lunation (∼20 days). We present the first predictions for deep dielectric charging of lunar regolith. To estimate the resulting subsurface electric fields, we develop a data-driven, one-dimensional, time-dependent model. For model inputs, we use GCR data from the Cosmic Ray Telescope for the Effects of Radiation on board the Lunar Reconnaissance Orbiter and SEP data from the Electron, Proton, and Alpha Monitor on the Advanced Composition Explorer. We find that during the recent solar minimum, GCRs create persistent electric fields up to ∼700 V/m. We also find that large SEP events create transient but strong electric fields (≥106 V/m) that may induce dielectric breakdown. Such breakdown would likely result in significant modifications to the physical and chemical properties of the lunar regolith within PSRs. Key Points Energetic charged particles deep dielectrically charge the lunar regolithWe model the resulting subsurface electric fieldsThe electric fields may be great enough to induce dielectric breakdown
On the evolutionary interplay between dispersal and local adaptation in heterogeneous environments
Journal ArticleCopyright © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.Dispersal, whether in the form of a dandelion seed drifting on the breeze, or a salmon migrating upstream to breed in a nonnatal stream, transports genes between locations. At these locations, local adaptation modifies the gene frequencies so their carriers are better suited to particular conditions, be those of newly disturbed soil or a quiet river pool. Both dispersal and local adaptation are major drivers of population structure; however, in general, their respective roles are not independent and the two may often be at odds with one another evolutionarily, each one exhibiting negative feedback on the evolution of the other. Here, we investigate their joint evolution within a simple, discrete-time, metapopulation model. Depending on environmental conditions, their evolutionary interplay leads to either a monomorphic population of highly dispersing generalists or a collection of rarely dispersing, locally adapted, polymorphic sub-populations, each adapted to a particular habitat type. A critical value of environmental heterogeneity divides these two selection regimes and the nature of the transition between them is determined by the level of kin competition. When kin competition is low, at the transition we observe discontinuities, bistability, and hysteresis in the evolved strategies; however, when high, kin competition moderates the evolutionary feedback and the transition is smooth.Natural Sciences and Engineering Research Council of CanadaYukon FoundationArmy Research Offic
Does Maintaining Green Leaf Area in Sorghum Improve Yield under Drought? I. Leaf Growth and Senescence
Production of sorghum [Sorghum bicolor (L.) Moench], an important cereal crop in semiarid regions of the world, is often limited by drought. When water is limiting during the grain-filling period, hybrids possessing the stay-green trait maintain more photosynthetically active leaves than hybrids not possessing this trait. To improve yield under drought, knowledge of the extent of genetic variation in green leaf area retention is required. Field studies were undertaken in northeastern Australia on a cracking and self-mulching gray clay to determine the effects of water regime and hybrid on the components of green leaf area at maturity (GLAM). Nine hybrids varying in stay-green were grown under a fully irrigated control, postflowering water deficit, and terminal (pre- and postflowering) water deficit. Water deficit reduced GLAM by 67% in the terminal drought treatment compared with the fully irrigated control. Under terminal water deficit, hybrids possessing the B35 and KS19 sources of stay-green retained more GLAM (1260 cm2 plant−1) compared with intermediate (780 cm2 plant−1) and senescent (670 cm2 plant−1) hybrids. RQL12 hybrids (KS19 source of stay-green) displayed delayed onset and reduced rate of senescence; A35 hybrids displayed only delayed onset. Visual rating of green leaf retention was highly correlated with measured GLAM, although this procedure is constrained by an inability to distinguish among the functional mechanisms determining the phenotype. Linking functional rather than phenotypic differences to molecular markers may improve the efficiency of selecting for traits such as stay-green
Dietary overlap of carcharhinid sharks in the Gulf of Papua
Assessing the feeding patterns of sharks provides insight into ecological interactions. Three coastal sharks are common by-catch in the Gulf of Papua prawn fishery in Papua New Guinea. The diets of Carcharhinus coatesi (n = 122), Rhizoprionodon acutus (n = 83) and Rhizoprionodon taylori (n = 177) were assessed using stomach content analysis. Teleosts, crustaceans and molluscs were the main prey. Percentage frequency of occurrence (%FO) and percentage frequency by number (%N) were computed to describe dietary compositions. Non-metric multidimensional scaling and Morisita Index determined the level of feeding overlap. Rhizoprionodon taylori was a generalist feeder having the broadest diet, R. acutus was the most selective feeder, preying predominantly on teleosts and C. coatesi consumed the greatest proportion of crustaceans that increased with size. The pairwise ANOSIM tests showed significant difference in dietary compositions of R. acutus and R. taylori (P = 0.1%, R = 0.318) and R. acutus and C. coatesi (P = 0.1%, R = 0.589), which indicate potential resource partitioning. Further work should aim to adequately characterise diets, improve prey identification and investigate spatial and temporal resource use patterns. Understanding ecological processes informs ecosystem approaches fisheries management
The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States
Land cover and land use influence surface climate through differences in biophysical surface properties, including partitioning of sensible and latent heat (e.g., Bowen ratio), surface roughness, and albedo. Clusters of closely spaced eddy covariance towers (e.g., \u3c10 \u3ekm) over a variety of land cover and land use types provide a unique opportunity to study the local effects of land cover and land use on surface temperature. We assess contributions albedo, energy redistribution due to differences in surface roughness and energy redistribution due to differences in the Bowen ratio using two eddy covariance tower clusters and the coupled (land-atmosphere) Variable-Resolution Community Earth System Model. Results suggest that surface roughness is the dominant biophysical factor contributing to differences in surface temperature between forested and deforested lands. Surface temperature of open land is cooler (−4.8 °C to −0.05 °C) than forest at night and warmer (+0.16 °C to +8.2 °C) during the day at northern and southern tower clusters throughout the year, consistent with modeled calculations. At annual timescales, the biophysical contributions of albedo and Bowen ratio have a negligible impact on surface temperature, however the higher albedo of snow-covered open land compared to forest leads to cooler winter surface temperatures over open lands (−0.4 °C to −0.8 °C). In both the models and observation, the difference in mid-day surface temperature calculated from the sum of the individual biophysical factors is greater than the difference in surface temperature calculated from radiative temperature and potential temperature. Differences in measured and modeled air temperature at the blending height, assumptions about independence of biophysical factors, and model biases in surface energy fluxes may contribute to daytime biases
Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle
Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound
- …