839 research outputs found

    Chiral Symmetry restoration in the massive Thirring model at finite T and Ό\mu: Dimensional reduction and the Coulomb gas

    Get PDF
    We show that in certain limits the (1+1)-dimensional massive Thirring model at finite temperature TT is equivalent to a one-dimensional Coulomb gas of charged particles at the same TT. This equivalence is then used to explore the phase structure of the massive Thirring model. For strong coupling and T>>mT>>m (the fermion mass) the system is shown to behave as a free gas of "molecules" (charge pairs in the Coulomb gas terminology) made of pairs of chiral condensates. This binding of chiral condensates is responsible for the restoration of chiral symmetry as T→∞T\to\infty. In addition, when a fermion chemical potential Ό≠0\mu\neq 0 is included, the analogy with a Coulomb gas still holds with ÎŒ\mu playing the role of a purely imaginary external electric field. For small TT and ÎŒ\mu we find a typical massive Fermi gas behaviour for the fermion density, whereas for large ÎŒ\mu it shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with the chiral properties of low-energy QCD at finite TT and baryon chemical potential are discussed.Comment: 28 pages, 6 figures, better resolution figures are available upon reques

    Are Occupation Numbers Observable?

    Get PDF
    The question of whether occupation numbers and momentum distributions of nucleons in nuclei are observables is considered from an effective field theory perspective. Field redefinitions lead to variations that imply the answer is negative, as illustrated in the interacting Fermi gas at low density. Implications for the interpretation of (e,e'p) experiments with nuclei are discussed.Comment: 8 pages, revtex4, 4 ps figure

    Finite Temperature Effective Potential for the Abelian Higgs Model to the Order e4,λ2e^4,\lambda^2

    Full text link
    A complete calculation of the finite temperature effective potential for the abelian Higgs model to the order e4,λ2e^4,\lambda^2 is presented and the result is expressed in terms of physical parameters defined at zero temperature. The absence of a linear term is verified explicitly to the given order and proven to survive to all orders. The first order phase transition has weakened in comparison with lower order calculation, which shows up in a considerable decrease of the surface tension. The only difference from the original version is the splitting of some overlong lines causing problems with certain mailers.Comment: 13 pages LaTex ( figures not included , hardcopy available on request : [email protected] or t00heb@dhhdesy3 ) , DESY 93-08

    The Paradox of Virtual Dipoles in the Einstein Action

    Get PDF
    The functional integral of pure Einstein 4D quantum gravity admits abnormally large and long-lasting "dipolar fluctuations", generated by virtual sources with the property Int d^4x Sqrt{g(x)} Tr T(x) = 0. These fluctuations would exist also at macroscopic scales, with paradoxical consequences. We set out their general features and give numerical estimates of possible suppression processes.Comment: LaTeX, 5 pages; reference adde

    TeV Astrophysics Constraints on Planck Scale Lorentz Violation

    Get PDF
    We analyze observational constraints from TeV astrophysics on Lorentz violating nonlinear dispersion for photons and electrons without assuming any a priori equality between the photon and electron parameters. The constraints arise from thresholds for vacuum Cerenkov radiation, photon decay and photo-production of electron-positron pairs. We show that the parameter plane for cubic momentum terms in the dispersion relations is constrained to an order unity region in Planck units. We find that the threshold configuration can occur with an asymmetric distribution of momentum for pair creation, and with a hard photon for vacuum Cerenkov radiation.Comment: 4 pages, RevTeX4, 1 figure. Some references and a footnote added, improved discussion on the photon annihilation and GZK cutoff. Minor changes of wording. Main results unchanged. Version to appear as a Rapid Communication in PR

    Celebrity culture and public connection: bridge or chasm?

    Get PDF
    Media and cultural research has an important contribution to make to recent debates about declines in democratic engagement: is for example celebrity culture a route into democratic engagement for those otherwise disengaged? This article contributes to this debate by reviewing qualitative and quantitative findings from a UK project on 'public connection'. Using self-produced diaries (with in-depth multiple interviews) as well as a nationwide survey, the authors argue that while celebrity culture is an important point of social connection sustained by media use, it is not linked in citizens' own accounts to issues of public concern. Survey data suggest that those who particularly follow celebrity culture are the least engaged in politics and least likely to use their social networks to involve themselves in action or discussion about public-type issues. This does not mean 'celebrity culture' is 'bad', but it challenges suggestions of how popular culture might contribute to effective democracy

    Maxwell - Chern - Simons topologically massive gauge fields in the first-order formalism

    Full text link
    We find the canonical and Belinfante energy-momentum tensors and their nonzero traces. We note that the dilatation symmetry is broken and the divergence of the dilatation current is proportional to the topological mass of the gauge field. It was demonstrated that the gauge field possesses the `scale dimensionality' d=1/2. Maxwell - Chern - Simons topologically massive gauge field theory in 2+1 dimensions is formulated in the first-order formalism. It is shown that 6x6-matrices of the relativistic wave equation obey the Duffin - Kemmer - Petiau algebra. The Hermitianizing matrix of the relativistic wave equation is given. The projection operators extracting solutions of field equations for states with definite energy-momentum and spin are obtained. The 5x5-matrix Schrodinger form of the equation is derived after the exclusion of non-dynamical components, and the quantum-mechanical Hamiltonian is obtained. Projection operators extracting physical states in the Schrodinger picture are found.Comment: 18 pages, correction in Ref. [5

    Gap ratio in anharmonic charge-density-wave systems

    Full text link
    Many experimental systems exist that possess charge-density-wave order in their ground state. While this order should be able to be described with models similar to those used for superconductivity, nearly all systems have a ratio of the charge-density-wave order parameter to the transition temperature that is too high for conventional theories. Recent work explained how this can happen in harmonic systems, but when the lattice distortion gets large, anharmonic effects must play an increasingly important role. Here we study the gap ratio for anharmonic charge-density wave systems to see whether the low-temperature properties possess universality as was seen previously in the transition temperature and to see whether the explanation for the large gap ratios survives for anharmonic systems as well.Comment: (5 pages, 3 figures, ReVTeX

    The Path-Integral Approach to the N=2 Linear Sigma Model

    Get PDF
    In QFT the effective potential is an important tool to study symmetry breaking phenomena. It is known that, in some theories, the canonical approach and the path-integral approach yield different effective potentials. In this paper we investigate this for the Euclidean N=2 linear sigma model. Both the Green's functions and the effective potential will be computed in three different ways. The relative merits of the various approaches are discussed.Comment: 2 figure

    Magnetotransport near a quantum critical point in a simple metal

    Full text link
    We use geometric considerations to study transport properties, such as the conductivity and Hall coefficient, near the onset of a nesting-driven spin density wave in a simple metal. In particular, motivated by recent experiments on vanadium-doped chromium, we study the variation of transport coefficients with the onset of magnetism within a mean-field treatment of a model that contains nearly nested electron and hole Fermi surfaces. We show that most transport coefficients display a leading dependence that is linear in the energy gap. The coefficient of the linear term, though, can be small. In particular, we find that the Hall conductivity σxy\sigma_{xy} is essentially unchanged, due to electron-hole compensation, as the system goes through the quantum critical point. This conclusion extends a similar observation we made earlier for the case of completely flat Fermi surfaces to the immediate vicinity of the quantum critical point where nesting is present but not perfect.Comment: 11 pages revtex, 4 figure
    • 

    corecore