8 research outputs found

    Thermal responses of single zone offices on existing near-extreme summer weather data

    Get PDF
    There have been a number of attempts in the past to define “near extreme” weather for facilitating overheating analysis in free running buildings. The most recently efforts include CIBSE latest release of Design Summer Year (DSY) weather using multiple complete weather years and a newly proposed composite DSY. This research aims to assess how various single zone offices respond to these new definitions of near extreme weathers. Parametric studies were carried out on single zone offices through which four sampling sets of models were employed to examine the thermal responses of dry bulb temperature, global solar radiation & wind speed collectively. London weather data from 1976 to 1995 were used and the overheating assessments were made based on CIBSE Guide A & BS EN 15251. The research discovers that solar radiation and wind both influence the predicted indoor warmth with solar radiation has obvious stronger impacts than wind. No perfect correlation was found from observation and Spearman’s rank order analysis on the ranks between the weather warmth and the predicted indoor warmth. The ranks made using multiple weather parameters show better correlation than some of the dry bulb temperature only metrics. The research also discovers that the Test Reference Year weather behaves warmer than expected. It is also found that a single complete year can not represent the near-extreme consistently and there is no evidence a composite DSY is better statistically. These findings support the notion of using multiple complete warm weather years for overheating assessments

    Design and Economic Analysis of a Photovoltaic System-A Case Study

    Get PDF
    This paper presents the design analysis of a photovoltaic (PV) system to power the CAD/CAM Laboratory at the Department of Mechanical Engineering, University of Port Harcourt. Life cycle cost and break-even point analyses are also carried out to assess the economic viability of the system. The unit cost of electricity for the designed PV system is high compared to the current unit cost of the municipally supplied electricity, but will be competitive with lowering cost of PV system components and favourable government policies on renewable energy. The approach and data provided are useful for designing solar systems in the area. The automated MS Excel spreadsheet developed could be used for the design and economic analyses of PV system in any other geographical region once the input data are sorted. Since about 90% of businesses in Nigeria currently own diesel generators, it is expected that future work should be devoted to the optimum combination of PV-Battery-Diesel system in electricity generation for optimum economic benefits to the countr

    Solution Tree Problem Solving Procedure for Engineering Analysis Problems

    No full text
    This paper presents a 10-step procedure, called the solution-tree problemsolving procedure, for solving engineering analysis problems. The core of the procedure is the development of a tree-like solution algorithm for the problem or class of problems, based on the divide-and-conquer and top-down design concepts. Illustrations are provided in the thermofluid engineering area to showcase the procedure’s applications. This approach has proved to be a veritable tool for enhancing the problem-solving and computer algorithmic skills of engineering students, eliciting their curiosity, active participation and appreciation of the taught course. It also affirms the procedural nature of many engineering professional activities, and instils in the students good ethical conduct in their engineering problem-solving effort.Keywords: Problem-solving algorithm; engineering analysis problem;solution tree; thermofluid; engineering educatio

    Design and Economic Analysis of a Photovoltaic System: A Case Study

    No full text
    <p>This paper presents the design analysis of a photovoltaic (PV) system to power the CAD/CAM Laboratory at the Department of Mechanical Engineering, University of Port Harcourt. Life cycle cost and break-even point analyses are also carried out to assess the economic viability of the system. The unit cost of electricity for the designed PV system is high compared to the current unit cost of the municipally supplied electricity, but will be competitive with lowering cost of PV system components and favourable government policies on renewable energy. The approach and data provided are useful for designing solar systems in the area. The automated MS Excel spreadsheet developed could be used for the design and economic analyses of PV system in any other geographical region once the input data are sorted. Since about 90% of businesses in Nigeria currently own diesel generators, it is expected that future work should be devoted to the optimum combination of PV-Battery-Diesel system in electricity generation for optimum economic benefits to the country.</p> <p class="icsmkeywords"><strong><em> </em></strong></p><strong><em>Keywords:</em></strong> photovoltaic system design, renewable energy technology, solar energy economic

    Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm

    No full text
    This paper presents the optimal mapping of hybrid energy systems, which are based on wind and PV, with the consideration of energy storage and backup diesel generator, for households in six locations in the South-South geopolitical (SS) zone of Nigeria: Benin-city, Warri, Yenagoa, Port Harcourt, Uyo and Calabar. The optima hybrid energy systems are able to meet 7.23 kWh/day household's electrical energy demand. The hybrid energy system for each of the locations was optimally obtained based on HOMER software computation and TOPSIS multi-criteria decision-making algorithm that considers technical, economic, environmental, and sociocultural criteria. Wind energy potential was conducted for the six locations using the Weibull distribution function; the wind speed ranges between 3.21 and 4.19 m/s at 10 m anemological height. The wind speeds and the wind characteristics were extrapolated for 30 m and 50 m hub heights. The solar resource potentials across the six locations are also presented – ranges between 4.21 and 4.71 kWh/m2/day. The best hybrid system for the locations in Benin-city, Yenagoa and Port Harcourt is the Diesel generator-PV-Wind-Battery system; whereas the best hybrid system for the locations in Warri, Uyo and Calabar is the PV-Wind-Battery system. The hybrid systems in Benin-city, Yenagoa and Port Harcourt emit CO2, only 8.47%, 15.02% and 14.09% of the business as usual (the diesel generator). The payback time ranges between 3.7 and 5.4 years, using 0.893 US/kWhcostofenergyobtainedforthebusinessasusual.Thecostofenergyofthehybridsystemsrangesbetween0.459and0.562US/kWh cost of energy obtained for the business as usual. The cost of energy of the hybrid systems ranges between 0.459 and 0.562 US/kWh, which compares well with available data in the public domain. The design parameters of the optima hybrid energy systems are also presented. The methodology presented here will serve as a design tool for renewable energy professionals

    Domestic energy demand assessment of coastline rural communities with solar electrification

    No full text
    The coastline rural communities in the Niger Delta region of Nigeria have long suffered from the consequences of poor rural electrification, environmental degradation, and health challenges. There is an urgent need to provide an optimal sustainable and environment-friendly energy system for the coastline rural communities in Nigeria, which has the potential of ameliorating the climate change in this country. The HOMER hybrid optimization software and the estimated domestic energy demand of the coastline rural communities were used to determine the best PV solar energy system. The NASA SEE database with monthly averaged values for global horizontal radiation over a 22-year period was considered in the current analysis. The daily energy demand of a typical household in the communities was estimated for the existing energy demand (EED), future electric energy demand (FEED), and future base energy demand (FBED) scenarios as 5.640, 8.830, and 7.233 kWh, respectively. The suggested best energy system has a cost of electricity of 0.651, 0.653, and 0.674 $/kWh for the EED, FEED, and FBED, respectively. The best energy system gives the best components with an appropriate operating strategy to provide an efficient, reliable, cost-effective, and environment-friendly system. It is shown that both positive energy policies of the Federal Government of Nigeria toward renewable energy penetration and the support from the oil-producing companies toward their operational areas would see the cost of electricity being significantly reduced. It is envisaged that the implementation of the suggested energy system with other environmentally responsible interventions would support the Niger-Delta’s coastline rural communities, whose livelihoods have been impaired by gas and oil exploration, to attain their full environmental and socioeconomic potentials
    corecore