6 research outputs found

    Infrared Thermography and Ultrasonography to Indirectly Monitor the Influence of Liner Type and Overmilking on Teat Tissue Recovery

    Get PDF
    Eight Danish Holstein cows were milked with a 1-mm thick specially designed soft liner on their right rear teat and a standard liner mounted under extra high tension on their left rear teat. Four of the animals were overmilked for 5 min. Rear teats were subjected to ultrasound examination on the first day and to infrared thermography on the second day. Teats were submersed in ethanol 20 min post-milking on the second day. Ultrasonography measurements showed that teat canal length increased by 30–41% during milking. Twenty minutes after milking, teats milked with modified standard liners still had elongated teat canals while teats milked with the soft liner were normalized. Overmilking tended to increase teat wall thickness. Approximately 80% of variability in teat canal length, from before teat preparation to after milking, could be explained by changes during teat preparation. Thermography indicated a general drop in teat temperature during teat preparation. Teat temperature increased during milking and continued to increase until the ethanol challenge induced a significant drop. Temperatures approached pre-challenge rather than pre-milking temperatures within 10 minutes after challenge. Teat temperatures were dependent on type of liner. Mid-teat temperatures post-challenge relative to pre-teat preparation were dependent on overmilking. Thermography and ultrasound were considered useful methods to indirectly and non invasively evaluate teat tissue integrity

    Keratin and S100 calcium-binding proteins are major constituents of the bovine teat canal lining

    Get PDF
    The bovine teat canal provides the first-line of defence against pathogenic bacteria infecting the mammary gland, yet the protein composition and host-defence functionality of the teat canal lining (TCL) are not well characterised. In this study, TCL collected from six healthy lactating dairy cows was subjected to two-dimensional electrophoresis (2-DE) and mass spectrometry. The abundance and location of selected identified proteins were determined by western blotting and fluorescence immunohistochemistry. The variability of abundance among individual cows was also investigated. Two dominant clusters of proteins were detected in the TCL, comprising members of the keratin and S100 families of proteins. The S100 proteins were localised to the teat canal keratinocytes and were particularly predominant in the cornified outermost layer of the teat canal epithelium. Significant between-animal variation in the abundance of the S100 proteins in the TCL was demonstrated. Four of the six identified S100 proteins have been reported to have antimicrobial activity, suggesting that the TCL has additional functionality beyond being a physical barrier to invading microorganisms. These findings provide new insights into understanding host-defence of the teat canal and resistance of cows to mastitis

    How to value biodiversity in environmental management?

    No full text
    corecore