39 research outputs found

    The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis

    Get PDF
    Background:To investigate small-nucleolar RNAs (snoRNAs) as reference genes when measuring miRNA expression in tumour samples, given emerging evidence for their role in cancer.Methods:Four snoRNAs, commonly used for normalisation, RNU44, RNU48, RNU43 and RNU6B, and miRNA known to be associated with pathological factors, were measured by real-time polymerase chain reaction in two patient series: 219 breast cancer and 46 head and neck squamous cell carcinoma (HNSCC). SnoRNA and miRNA were then correlated with clinicopathological features and prognosis.Results:Small-nucleolar RNA expression was as variable as miRNA expression (miR-21, miR-210, miR-10b). Normalising miRNA PCR expression data to these recommended snoRNAs introduced bias in associations between miRNA and pathology or outcome. Low snoRNA expression correlated with markers of aggressive pathology. Low levels of RNU44 were associated with a poor prognosis. RNU44 is an intronic gene in a cluster of highly conserved snoRNAs in the growth arrest specific 5 (GAS5) transcript, which is normally upregulated to arrest cell growth under stress. Low-tumour GAS5 expression was associated with a poor prognosis. RNU48 and RNU43 were also identified as intronic snoRNAs within genes that are dysregulated in cancer.Conclusion:Small-nucleolar RNAs are important in cancer prognosis, and their use as reference genes can introduce bias when determining miRNA expression. © 2011 Cancer Research UK All rights reserved

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and ÎČ-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and ÎČ), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with prognosis of estrogen receptor-negative breast cancer after chemotherapy.

    Get PDF
    Tumor lymphocyte infiltration has been associated with clinical response to chemotherapy in estrogen receptor (ER) negative breast cancer. To identify variants in immunosuppressive pathway genes associated with prognosis after adjuvant chemotherapy for ER-negative patients, we studied invasive breast cancer patients of European ancestry with stage I-III disease, including 9,334 ER-positive patients (3,151 treated with chemotherapy) and 2,334 ER-negative patients (1,499 treated with chemotherapy).Funding for the iCOGS infrastructure came from: the European Community’s Seventh Framework Programme under grant agreement number 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The BCAC is funded by CR-UK (C1287/A10118 and C1287/A12014). Meetings of the BCAC have been funded by the European Union COST program (BM0606). The ABCS study was supported by the Dutch Cancer Society (grants NKI 2007-3839; 2009 4363); BBMRI-NL, which is a Research Infrastructure financed by the Dutch government (NWO 184.021.007); and the Dutch National Genomics Initiative. The work of the BBCC study was partly funded by ELAN-Fond of the University Hospital of Erlangen. The HEBCS study was financially supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. Financial support for KARBAC study was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institute, the Swedish Cancer Society, The Gustav V Jubilee foundation and Bert von Kantzows foundation. The KBCP study was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, and by the strategic funding of the University of Eastern Finland. The LMBC study is supported by the Stichting tegen Kanker (232–2008 and 196–2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I, 106332, 108253, 108419), the Hamburg Cancer Society, the German Cancer Research Center and the Federal Ministry of Education and Research (BMBF) Germany (01KH0402). The MCBCS study was supported by the NIH grants CA128978, CA116167, CA176785 and NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), and the Breast Cancer Research Foundation and a generous gift from the David F and Margaret T Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. The NBCS study was supported by grants from the Norwegian Research council, 155218/ V40, 175240/S10 to ALBD, FUGE-NFR 181600/V11 to VNK and a Swizz Bridge Award to ALBD. The OFBCR study was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The PBCS study was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. The RBCS study was funded by the Dutch Cancer Society (DDHK 2004–3124, DDHK 2009–4318). The SASBAC study was supported by funding from the Agency for Science, Technology and Research of Singapore (A*STAR), the US National Institute of Health (NIH) and the Susan G Komen Breast Cancer Foundation. The SEARCH study is funded by a program grant from Cancer Research UK (C490/A10124)] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SKKDKFZS study is supported by the German Cancer Research Center. The kConFab study is supported by a grant from the National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. The kConFab follow-up study has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA). KAP is a National Breast Cancer Foundation Fellow (Australia). The HERPACC study was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The MYBRCA study is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19/550), Singapore and the National medical Research Council, Singapore NMRC/CG/SERI/2010). The SEBCS study was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). The TWBCS study is supported by the Taiwan Biobank project of the Institute of Biomedical Sciences, Academia Sinica, Taiwan. The POSH study was supported by Funding Breast Cancer Campaign (NOV210PR62) and Cancer Research UK (C1275/A9896). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers Lei et al. Breast Cancer Research (2015) 17:18 Page 11 of 13 in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the USA Government or the BCFR. Douglas F Easton is a Principal Research Fellow of Cancer Research UK. The funders had no roles in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Mechanical properties of the porcine coronary artery

    No full text
    Knowledge of the mechanical properties of arteries is important to understand vascular function during disease and the effect of interventions, such as PTCA treatment. A mechanical model of the vascular tree would facilitate the improvement of (balloon-)catheters and stents. The aim of this research is to propose general parameter values for the fiber-reinforced material model as proposed by Driessen et al. (2005) that can describe the arterial wall behavior of the porcine left anterior descending coronary artery (LAD, fig. 1a) at physiological axial stretch

    A generic constitutive model for the passive porcine coronary artery

    Get PDF
    Constitutive models describing the arterial mechanical behavior are important in the development of catheterization products, to be used in arteries with a specific radius. To prove the possible existence of a constitutive model that, provided with a generic set of material and geometric parameters, is able to predict the radius-specific mechanical behavior of a coronary artery, the passive pressure–inner radius (P–r i ) and pressure–axial force change (P–¿F z ) relations of seven porcine left anterior descending coronary arteries were measured in an in-vitro set-up and fitted with the model of Driessen et al. in J Biomech Eng 127(3):494–503 (2005), Biomech Model Mechanobiol 7(2):93–103 (2008). Additionally, the collagen volume fraction, physiological axial pre-stretch, and wall thickness to inner radius ratio at physiological loading were determined for each artery. From this, two generic parameter sets, each comprising four material and three geometric parameters, were obtained. These generic sets were used to compute the deformation of each tested artery using a single radius measurement at physiological loading as an artery-specific input. Artery-specific P–r i and P–¿F z relations were predicted with an accuracy of 32 ”m (2.3%) and 6 mN (29% relative to ÂżF z -range) on average compared to the relations measured in-vitro. It was concluded that the constitutive model provided with the generic parameters found in this study can well predict artery-specific mechanical behavior
    corecore