21 research outputs found

    Constraints on Supersymmetry from LHC data on SUSY searches and Higgs bosons combined with cosmology and direct dark matter searches

    Full text link
    The ATLAS and CMS experiments did not find evidence for Supersymmetry using close to 5/fb of published LHC data at a center-of-mass energy of 7 TeV. We combine these LHC data with data on B_s -> mu mu (LHCb experiment), the relic density (WMAP and other cosmological data) and upper limits on the dark matter scattering cross sections on nuclei (XENON100 data). The excluded regions in the constrained Minimal Supersymmetric SM (CMSSM) lead to gluinos excluded below 1270 GeV and dark matter candidates below 220 GeV for values of the scalar masses (m_0) below 1500 GeV. For large m_0 values the limits of the gluinos and the dark matter candidate are reduced to 970 GeV and 130 GeV, respectively. If a Higgs mass of 125 GeV is imposed in the fit, the preferred SUSY region is above this excluded region, but the size of the preferred region is strongly dependent on the assumed theoretical error.Comment: 12 pages, 5 figures, Refs. updated, Published version in Eur. Phys. J. C with updated references and minor corrections. arXiv admin note: substantial text overlap with arXiv:1202.336

    Updated Reach of the CERN LHC and Constraints from Relic Density, b->s gamma and a(mu) in the mSUGRA Model

    Full text link
    {We present an updated assessment of the reach of the CERN LHC pp collider for supersymmetric matter in the context of the minimal supergravity (mSUGRA) model. In addition to previously examined channels, we also include signals with an isolated photon or with a leptonically decaying Z boson. For an integrated luminosity of 100 fb^{-1}, values of m_{1/2}\sim 1400 GeV can be probed for small m_0, corresponding to a gluino mass of m_{\tg}\sim 3 TeV. For large m_0, in the hyperbolic branch/focus point region, m_{1/2}\sim 700 GeV can be probed, corresponding to m_{\tg}\sim 1800 GeV. We also map out parameter space regions preferred by the measured values of the dark matter relic density, the b\to s\gamma decay rate, and the muon anomalous magnetic moment a_\mu, and discuss how SUSY might reveal itself in these regions. We find the CERN LHC can probe the entire stau co-annihilation region and also most of the heavy Higgs annihilation funnel allowed by WMAP data, except for some range of large m_0 and m_{1/2} if \tan\beta \agt 50.Comment: 22 page latex file including 10 EPS figures; bug fix in relic density code modifies figures in co-annihilation regio

    CAD-based computer vision: the automatic generation of recognition stragtegies

    Get PDF
    Journal ArticleThree-dimensional model-based computer vision uses geometric models of objects and sensed data to recognize objects in a scene. Likewise, Computer Aided Design (CAD) systems are used to interactively generate three-dimensional models during these fields. Recently, the unification of CAD and vision systems has become the focus of research in the context of manufacturing automation. This paper explores the connection between CAD and computer vision. A method for the automatic generation of recognition strategies based on the geometric properties of shape has been devised and implemented. This uses a novel technique developed for quantifying the following properties of features which compose models used in computer vision: robustness, completeness, consistency, cost, and uniqueness. By utilizing this information, the automatic synthesis of a specialized recognition scheme, called a Strategy Tree, is accomplished. Strategy Trees describe, in a systematic and robust manner. the search process used for recognition and localization of particular objects in the given scene. They consist of selected features which satisfy system constraints and Corroborating Evidence Subtrees which are used in the formation of hypotheses. Verification techniques, used to substantiate or refute these hypotheses, are explored. Experiments utilizing 3-D data are presented

    Performance of prototype GE1\slash1 chambers for the CMS muon spectrometer upgrade

    No full text
    The high-luminosity phase of the Large Hadron Collider (HL-LHC) will result in ten times higher particle background than measured during the first phase of LHC operation. In order to fully exploit the highly-demanding operating conditions during HL-LHC, the Compact Muon Solenoid (CMS) Collaboration will use Gas Electron Multiplier (GEM) detector technology. The technology will be integrated into the innermost region of the forward muon spectrometer of CMS as an additional muon station called GE1\slash1. The primary purpose of this auxiliary station is to help in muon reconstruction and to control level-1 muon trigger rates in the pseudo-rapidity region 1.6<∣η∣<2.21.6 <\mid\eta\mid<2.2. The new station will contain trapezoidal-shaped GEM detectors called GE1\slash1 chambers. The design of these chambers is finalized, and the installation is in progress during the Long Shutdown phase two (LS-2) that started in 2019. Several full-size prototypes were built and operated successfully in various test beams at CERN. We describe performance measurements such as gain, efficiency, and time resolution of these prototype chambers, developed after years of R&\&D, and summarize their behavior in different gas compositions as a function of the applied voltage

    GEM detectors for the Upgrade of the CMS Muon Forward system

    No full text

    A Firmware-oriented Analytical Algorithm for Trigger Primitive Generation in the CMS Drift Tubes Detector for the High Luminosity LHC

    No full text
    The Compact Muon Solenoid (CMS) experiment prepares its Phase-2 upgrade for the high-luminosity era of the LHC operation (HL-LHC). Due to the increase of occupancy, trigger latency and rates, the full electronics of the CMS Drift Tube (DT) chambers will need to be replaced. In the new design, the time bin for the digitisation of the chamber signals will be of around 1~ns, and the totality of the signals will be forwarded asynchronously to the service cavern at full resolution. The new backend system will be in charge of building the trigger primitives of each chamber. These trigger primitives contain the information at chamber level about the muon candidates position, direction, and collision time, and are used as input in the L1 CMS trigger. The added functionalities will improve the robustness of the system against ageing. An algorithm based on analytical solutions for reconstructing the DT trigger primitives, called Analytical Method, has been implemented both as a software C++ emulator and in firmware. Its performance has been estimated using the software emulator with simulated and real data samples, and through hardware implementation tests. Measured efficiencies are high and time and spatial resolutions are close to the ultimate performance of the DT chambers. A prototype chain of the HL-LHC electronics using the Analytical Method for trigger primitive generation has been installed during Long Shutdown 2 of the LHC and operated in CMS cosmic data taking campaigns in 2020 and 2021. Results from this validation step, the so-called Slice Test, are presented

    Status of the installation and commissioning of the first GEM station at the CMS experiment

    No full text
    The foreseen upgrade of the Large Hadron Collider (LHC) will lead to an increase of its luminosity up to 5 – 7 × 1034 cm−2s−1, five times more than the original design value. The CMS muon system must be able to sustain a physics program after the increase of luminosity and maintain sensitivity for electroweak physics for TeV scale searches achieved during Run2. To cope with the corresponding increase in background rates and trigger requirements, the installation of additional sets of muon detectors based on Gas Electron Multiplier (GEM) technology, referred to as GE1/1, GE2/1 and ME0, has been planned. The installation and commissioning of the GE1/1 detectors in the CMS experiment have been scheduled in two separate phases: the first 72 detectors have been already installed together with their services (gas, cooling, low voltage and high voltage) in 2019 and they are undergoing the commissioning phase, while the completion of the station is foreseen in autumn 2020. The author will describe the detector design, the quality assurance and certification path, as well as will present the status of the installation and commissioning, worth its preliminary results and an overview for the complete integration of the GE1/1 project on the CMS experiment

    Study of the Effects of Radiation at the CERN Gamma Irradiation Facility on the CMS Drift Tubes Muon Detector for the HL-LHC on the CMS DT for the HL-LHC

    No full text
    The CMS drift tubes (DT) muon detector, built for standing up the LHC expected integrated and instantaneous luminosities, will be used also in the High Luminosity LHC (HL-LHC) at a 5 times larger instantaneous luminosity and, consequently, much higher levels of radiation, reaching about 10 times the LHC integrated luminosity. Initial irradiation tests of a spare DT chamber at the CERN gamma irradiation facility (GIF++), at large (~O(100)) acceleration factor, showed aging effects resulting in a degradation of the DT cell performance; however, full CMS simulations have shown almost no impact in the muon reconstruction efficiency over the full barrel acceptance and for the full integrated luminosity. A second spare DT chamber was moved inside the GIF++ bunker in October 2017. The chamber was being irradiated at lower acceleration factors, and only 2 out of the 12 layers of the chamber are switched at working voltage when the radioactive source is active, being the other layers in standby. In this way the other non-aged layers are used as reference and as a precise and unbiased telescope of muon tracks for the efficiency computation of the aged layers of the chamber, when set at working voltage for measurements. An integrated dose equivalent to two times the expected integrated luminosity of the HL-LHC run has been absorbed by this second spare DT chamber and the final impact on the muon reconstruction efficiency is under study. Direct inspection of some extracted aged anode wires presented a melted resistive deposition of materials. Investigation on the outgassing of cell materials and of the gas components used at the GIF++ are underway. Strategies to mitigate the aging effects are also being developed. From the long irradiation measurements of the second spare DT chamber, the effects of radiation in the performance of the DTs expected during the HL-LHC run will be presented
    corecore