9 research outputs found

    Glucose-induced down regulation of thiamine transporters in the kidney proximal tubular epithelium produces thiamine insufficiency in diabetes

    Get PDF
    Increased renal clearance of thiamine (vitamin B1) occurs in experimental and clinical diabetes producing thiamine insufficiency mediated by impaired tubular re-uptake and linked to the development of diabetic nephropathy. We studied the mechanism of impaired renal re-uptake of thiamine in diabetes. Expression of thiamine transporter proteins THTR-1 and THTR-2 in normal human kidney sections examined by immunohistochemistry showed intense polarised staining of the apical, luminal membranes in proximal tubules for THTR-1 and THTR-2 of the cortex and uniform, diffuse staining throughout cells of the collecting duct for THTR-1 and THTR-2 of the medulla. Human primary proximal tubule epithelial cells were incubated with low and high glucose concentration, 5 and 26 mmol/l, respectively. In high glucose concentration there was decreased expression of THTR-1 and THTR-2 (transporter mRNA: −76% and −53% respectively, p<0.001; transporter protein −77% and −83% respectively, p<0.05), concomitant with decreased expression of transcription factor specificity protein-1. High glucose concentration also produced a 37% decrease in apical to basolateral transport of thiamine transport across cell monolayers. Intensification of glycemic control corrected increased fractional excretion of thiamine in experimental diabetes. We conclude that glucose-induced decreased expression of thiamine transporters in the tubular epithelium may mediate renal mishandling of thiamine in diabetes. This is a novel mechanism of thiamine insufficiency linked to diabetic nephropathy

    Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from Different Breeds

    Get PDF
    BACKGROUND: In order to maintain cohesion of groups, social animals need to process social information efficiently. Visual individual recognition, which is distinguished from mere visual discrimination, has been studied in only few mammalian species. In addition, most previous studies used either a small number of subjects or a few various views as test stimuli. Dairy cattle, as a domestic species allow the testing of a good sample size and provide a large variety of test stimuli due to the morphological diversity of breeds. Hence cattle are a suitable model for studying individual visual recognition. This study demonstrates that cattle display visual individual recognition and shows the effect of both familiarity and coat diversity in discrimination. [br/]METHODOLOGY/PRINCIPAL FINDINGS: We tested whether 8 Prim'Holstein heifers could recognize 2D-images of heads of one cow (face, profiles, (3/4) views) from those of other cows. Experiments were based on a simultaneous discrimination paradigm through instrumental conditioning using food rewards. In Experiment 1, all images represented familiar cows (belonging to the same social group) from the Prim'Holstein breed. In Experiments 2, 3 and 4, images were from unfamiliar (unknown) individuals either from the same breed or other breeds. All heifers displayed individual recognition of familiar and unfamiliar individuals from their own breed. Subjects reached criterion sooner when recognizing a familiar individual than when recognizing an unfamiliar one (Exp 1: 3.1+/-0.7 vs. Exp 2: 5.2+/-1.2 sessions; Z = 1.99, N = 8, P = 0.046). In addition almost all subjects recognized unknown individuals from different breeds, however with greater difficulty. [br/] CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that cattle have efficient individual recognition based on categorization capacities. Social familiarity improved their performance. The recognition of individuals with very different coat characteristics from the subjects was the most difficult task. These results call for studies exploring the mechanisms involved in face recognition allowing interspecies comparisons, including humans

    Pigeons and doves

    No full text

    Thinking chickens: a review of cognition, emotion, and behavior in the domestic chicken

    Get PDF
    Domestic chickens are members of an order, Aves, which has been the focus of a revolution in our understanding of neuroanatomical, cognitive, and social complexity. At least some birds are now known to be on par with many mammals in terms of their level of intelligence, emotional sophistication, and social interaction. Yet, views of chickens have largely remained unrevised by this new evidence. In this paper, I examine the peer-reviewed scientific data on the leading edge of cognition, emotions, personality, and sociality in chickens, exploring such areas as self-awareness, cognitive bias, social learning and self-control, and comparing their abilities in these areas with other birds and other vertebrates, particularly mammals. My overall conclusion is that chickens are just as cognitively, emotionally and socially complex as most other birds and mammals in many areas, and that there is a need for further noninvasive comparative behavioral research with chickens as well as a re-framing of current views about their intelligence
    corecore