1,473 research outputs found

    Effects of work-related factors on the breastfeeding behavior of working mothers in a Taiwanese semiconductor manufacturer: a cross-sectional survey

    Get PDF
    BACKGROUND: In recent years, the creation of supportive environments for encouraging mothers to breastfeed their children has emerged as a key health issue for women and children. The provision of lactation rooms and breast pumping breaks have helped mothers to continue breastfeeding after returning to work, but their effectiveness is uncertain. The aim of this study was to assess the effects of worksite breastfeeding-friendly policies and work-related factors on the behaviour of working mothers. METHODS: This study was conducted at a large Taiwanese semiconductor manufacturer in August-September 2003. Questionnaires were used to collect data on female employees' breastfeeding behaviour, child rearing and work status when raising their most recently born child. A total of 998 valid questionnaires were collected, giving a response rate of 75.3%. RESULTS: The results showed that 66.9% of survey respondents breastfed initially during their maternity leave, which averaged 56 days. Despite the provision of lactation rooms and breast pumping breaks, only 10.6% mothers continued to breastfeed after returning to work, primarily office workers and those who were aware of their company's breastfeeding-friendly policies. CONCLUSION: In conclusion, breastfeeding-friendly policies can significantly affect breastfeeding behaviour. However, an unfavourable working environment, especially for fab workers, can make it difficult to implement breastfeeding measures. With health professionals emphasizing that the importance of breastfeeding for infant health, and as only females can perform lactation, it is vital that women's work "productive role" and family "reproductive role" be respected and accommodated by society

    Body mass index, physical activity, and dietary behaviors among members of an urban community fitness center: a questionnaire survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of effective behavioral interventions to promote weight control and physical activity among diverse, underserved populations is a public health priority. Community focused wellness organizations, such as YMCAs, could provide a unique channel with which to reach such populations. This study assessed health behaviors and related characteristics of members of an urban YMCA facility.</p> <p>Methods</p> <p>We surveyed 135 randomly selected members of an urban YMCA facility in Massachusetts to examine self-reported (1) physical activity, (2) dietary behaviors, (3) body mass index, and (4) correlates of behavior change among short-term (i.e., one year or less) and long-term (i.e., more than one year) members. Chi-square tests were used to assess bivariate associations between variables, and multivariate linear regression models were fit to examine correlates of health behaviors and weight status.</p> <p>Results</p> <p>Eighty-nine percent of short-term and 94% of long-term members reported meeting current physical activity recommendations. Only 24% of short-term and 19% of long-term members met fruit and vegetable consumption recommendations, however, and more than half were overweight or obese. Length of membership was not significantly related to weight status, dietary behaviors, or physical activity. Most respondents were interested in changing health behaviors, in the preparation stage of change, and had high levels of self-efficacy to change behaviors. Short-term members had less education (p = 0.02), lower household incomes (p = 0.02), and were less likely to identify as white (p = 0.005) than long-term members. In multivariate models, females had lower BMI than males (p = 0.003) and reported less physical activity (p = 0.008). Physical activity was also inversely associated with age (p = 0.0004) and education (p = 0.02).</p> <p>Conclusion</p> <p>Rates of overweight/obesity and fruit and vegetable consumption suggested that there is a need for a weight control intervention among members of an urban community YMCA. Membership in such a community wellness facility alone might not be sufficient to help members maintain a healthy weight. The data indicate that YMCA members are interested in making changes in their dietary and physical activity behaviors. Targeting newer YMCA members might be an effective way of reaching underserved populations. These data will help inform the development of a weight control intervention tailored to this setting.</p

    Selection for environmental variance of litter size in rabbits

    Get PDF
    [EN] Background: In recent years, there has been an increasing interest in the genetic determination of environmental variance. In the case of litter size, environmental variance can be related to the capacity of animals to adapt to new environmental conditions, which can improve animal welfare. Results: We developed a ten-generation divergent selection experiment on environmental variance. We selected one line of rabbits for litter size homogeneity and one line for litter size heterogeneity by measuring intra-doe phenotypic variance. We proved that environmental variance of litter size is genetically determined and can be modified by selection. Response to selection was 4.5% of the original environmental variance per generation. Litter size was consistently higher in the Low line than in the High line during the entire experiment. Conclusions: We conclude that environmental variance of litter size is genetically determined based on the results of our divergent selection experiment. This has implications for animal welfare, since animals that cope better with their environment have better welfare than more sensitive animals. We also conclude that selection for reduced environmental variance of litter size does not depress litter size.This research was funded by the Ministerio de Economía y Competitividad (Spain), Projects AGL2014-55921, C2-1-P and C2-2-P. Marina Martínez-Alvaro has a Grant from the same funding source, BES-2012-052655.Blasco Mateu, A.; Martínez Álvaro, M.; García Pardo, MDLL.; Ibáñez Escriche, N.; Argente, MJ. (2017). Selection for environmental variance of litter size in rabbits. Genetics Selection Evolution. 49(48):1-8. https://doi.org/10.1186/s12711-017-0323-4S184948Morgante F, Sørensen P, Sorensen DA, Maltecca C, Mackay TFC. Genetic architecture of micro-environmental plasticity in Drosophila melanogaster. Sci Rep. 2015;5:9785.Sørensen P, de los Campos G, Morgante F, Mackay TFC, Sorensen D. Genetic control of environmental variation of two quantitative traits of Drosophila melanogaster revealed by whole-genome sequencing. Genetics. 2015;201:487–97.Zhang XS, Hill WG. Evolution of the environmental component of the phenotypic variance: stabilizing selection in changing environments and the homogeneity cost. Evolution. 2005;59:1237–44.Mulder HA, Bijma P, Hill WG. Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance. Genet Sel Evol. 2008;40:37–59.Bodin L, Bolet G, Garcia M, Garreau H, Larzul C, David I. Robustesse et canalisation, vision de généticiens. INRA Prod Anim. 2010;23:11–22.García ML, Argente MJ, Muelas R, Birlanga V, Blasco A. Effect of divergent selection for residual variance of litter size on health status and welfare. In: Proceedings of the 10th World Rabbit Congress. Sharm El-Sheikh; 2012. p. 103–6.Argente MJ, García ML, Zbynovska K, Petruska P, Capcarova M, Blasco A. Effect of selection for residual variance of litter size on hematology parameters as immunology indicators in rabbits. In: Proceedings of the 10th World Congress on genetics applied to livestock production. Vancouver; 2014.García ML, Zbynovska K, Petruska P, Bovdisová I, Kalafová A, Capcarova M, et al. Effect of selection for residual variance of litter size on biochemical parameters in rabbits. In: Proceedings of the 67th annual meeting of the European Federation of Animal Science. Belfast; 2016.Broom DM. Welfare assessment and relevant ethical decisions: key concepts. Annu Rev Biomed Sci. 2008;20:79–90.SanCristobal-Gaudy M, Bodin L, Elsen JM, Chevalet C. Genetic components of litter size variability in sheep. Genet Sel Evol. 2001;33:249–71.Sorensen D, Waagepetersen R. Normal linear models with genetically structured residual variance heterogeneity: a case study. Genet Res. 2003;82:207–22.Mulder HA, Hill WG, Knol EF. Heritable environmental variance causes nonlinear relationships between traits: application to birth weight and stillbirth of pigs. Genetics. 2015;199:1255–69.Ros M, Sorensen D, Waagepetersen R, Dupont-Nivet M, San Cristobal M, Bonnet JC. Evidence for genetic control of adult weight plasticity in the snail Helix aspersa. Genetics. 2004;168:2089–97.Gutiérrez JP, Nieto B, Piqueras P, Ibáñez N, Salgado C. Genetic parameters for components analysis of litter size and litter weight traits at birth in mice. Genet Sel Evol. 2006;38:445–62.Ibáñez-Escriche N, Sorensen D, Waagepetersen R, Blasco A. Selection for environmental variation: a statistical analysis and power calculations to detect response. Genetics. 2008;180:2209–26.Wolc A, White IM, Avendano S, Hill WG. Genetic variability in residual variation of body weight and conformation scores in broiler chickens. Poult Sci. 2009;88:1156–61.Fina M, Ibáñez-Escriche N, Piedrafita J, Casellas J. Canalization analysis of birth weight in Bruna dels Pirineus beef cattle. J Anim Sci. 2013;91:3070–8.Mulder HA, Rönnegård L, Fikse WF, Veerkamp RF, Strandberg E. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models. Genet Sel Evol. 2013;45:23.Janhunen M, Kause A, Vehviläinen H, Järvisalom O. Genetics of microenvironmental sensitivity of body weight in rainbow trout (Oncorhynchus mykiss) selected for improved growth. PLoS One. 2012;7:e38766.Sonesson AK, Ødegård J, Rönnegård L. Genetic heterogeneity of within-family variance of body weight in Atlantic salmon (Salmo salar). Genet Sel Evol. 2013;45:41.Garreau H, Bolet G, Larzul C, Robert-Granie C, Saleil G, SanCristobal M, et al. Results of four generations of a canalising selection for rabbit birth weight. Livest Sci. 2008;119:55–62.Pun A, Cervantes I, Nieto B, Salgado C, Pérez-Cabal MA, Ibáñez-Escriche N, et al. Genetic parameters for birth weight environmental variability in mice. J Anim Breed Genet. 2012;130:404–14.Hill WG, Mulder HA. Genetic analysis of environmental variation. Genet Res (Camb). 2010;92:381–95.Yang Y, Christensen OF, Sorensen D. Analysis of a genetically structured variance heterogeneity model using the Box–Cox transformation. Genet Res (Camb). 2011;93:33–46.Piles M, Garcia ML, Rafel O, Ramon J, Baselga M. Genetics of litter size in three maternal lines of rabbits: repeatability versus multiple-trait models. J Anim Sci. 2006;84:2309–15.Estany J, Baselga M, Blasco A, Camacho J. Mixed model methodology for the estimation of genetic response to selection in litter size of rabbits. Livest Prod Sci. 1989;21:67–75.Box GEP, Tiao GC. Bayesian inference in statistical analysis. New York: Wiley; 1973.Searle SR. Matrix algebra useful for statistics. Toronto: Wiley; 1982.Sorensen D, Gianola D. Likelihood, Bayesian and MCMC methods in quantitative genetics. New York: Springer; 2002.Geyer CM. Practical Markov chain Monte Carlo (with discussion). Stat Sci. 1992;7:467–511.Legarra A. TM threshold model. 2008. http://genoweb.toulouse.inra.fr/~alegarra/tm_folder/ . Accessed 02 May 2017.Blasco A. Bayesian data analysis for animal scientists. New York: Springer; 2017.Rönnegård L, Felleki M, Fikse F, Mulder HA, Strandberg E. Genetic heterogeneity of residual variance—estimation of variance components using double hierarchical generalized linear models. Genet Sel Evol. 2010;42:8.Felleki M, Lee D, Lee Y, Gilmour AR, Rönnegård L. Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models. Genet Res (Camb). 2012;94:307–17.Thompson R. Estimation of realized heritability in a selected population using mixed model methods. Genet Sel Evol. 1986;18:475–84.Sorensen DA, Johansson K. Estimation of direct and correlated responses to selection using univariate animal models. J Anim Sci. 1992;70:2038–44.Popper K. The logic of scientific discovery. London: Hutchinson & Co; 1959.Falconer DS, MacKay TFC. An introduction to quantitative genetics. 4th ed. Harlow: Longman Group Ltd; 1996.Formoso-Rafferty N, Cervantes I, Ibáñez-Escriche N, Gutiérrez JP. Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability. Animal. 2016;10:1770–7.Ibáñez-Escriche N, Moreno A, Nieto B, Piqueras P, Salgado C, Gutiérrez JP. Genetic parameters related to environmental variability of weight traits in a selection experiment for weight gain in mice; signs of correlated canalised response. Genet Sel Evol. 2008;40:279–93.Mulder HA, Hill WG, Vereijken A, Veerkamp RF. Estimation of genetic variation in residual variance in female and male broiler chickens. Animal. 2009;3:1673–80.Ibáñez-Escriche N, Varona L, Sorensen D, Noguera JL. A study of heterogeneity of environmental variance for slaughter weight in pigs. Animal. 2008;2:19–26.Bolet G, Garreau H, Hurtaud J, Saleil G, Esparbié J, Falieres J. Canalising selection on within litter variability of birth weight in rabbits: responses to selection and characteristics of the uterus of the does. In: Proceedings of the 9th World Rabbit Congress. Verona; 2008. p. 51–6.San Cristobal-Gaudy M, Elsen JM, Bodin L, Chevalet C. Prediction of the response to a selection for canalisation of a continuous trait in animal breeding. Genet Sel Evol. 1998;30:423–51.Argente MJ, Santacreu MA, Climent A, Blasco A. Genetic correlations between litter size and uterine capacity. In: Proceeding of the 8th World Rabbit Congress. Valencia; 2000. p. 333–38.Rauw WM. Immune response from a resource allocation perspective. Front Genet. 2012;3:267

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Purinergic signaling microenvironments: An introduction

    Get PDF
    The common theme of this introductory article and the minireviews that follow in this special issue is the concept of microenvironments within tissues and surrounding cells that would be ideal signaling venues for a biologically active purinergic ligand. Collectively, the editors/authors and the other contributing authors agree that nucleotides and nucleosides would be most potent within a confined system. A talented cadre of purinergics has been solicited to discuss purinergic signaling in his or her favorite microenvironment within a given organ or tissue. We are gratified by the large number of original articles that also have successfully navigated the peer review process and are part of this special issue. These concepts are not simply purinergic, but the idea of maximal potency in a tissue microenvironment and surrounding specialized cells within a tissue pertains to any autacoid or paracrine agonist
    corecore