22 research outputs found

    Organizing Effects of Sex Steroids on Brain Aromatase Activity in Quail

    Get PDF
    Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first experiment we measured AA in brain regions micropunched in adult male and female Japanese quail utilizing the novel strategy of basing the microdissections on the distribution of aromatase-immunoreactive cells. The largest sex difference was found in the medial bed nucleus of the stria terminalis (mBST) followed by the medial preoptic nucleus (POM) and the tuberal hypothalamic region. A second experiment tested the effect of embryonic treatments known to sex-reverse male copulatory behavior (i.e., estradiol benzoate [EB] or the aromatase inhibitor, Vorozole) on brain AA in gonadectomized adult males and females chronically treated as adults with testosterone. Embryonic EB demasculinized male copulatory behavior, while vorozole blocked demasculinization of behavior in females as previously demonstrated in birds. Interestingly, these treatments did not affect a measure of appetitive sexual behavior. In parallel, embryonic vorozole increased, while EB decreased AA in pooled POM and mBST, but the same effect was observed in both sexes. Together, these data indicate that the early action of estrogens demasculinizes AA. However, this organizational action of estrogens on AA does not explain the behavioral sex difference in copulatory behavior since AA is similar in testosterone-treated males and females that were or were not exposed to embryonic treatments with estrogens

    Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish

    Get PDF
    We thank Scott Colborne for his help in collecting bluegill, Dave Bridges for providing the R script to convert Ensemble IDs to stickleback homologs, and David Winter and Jeramia Ory for providing Python script used in the bioinformatics analyses. We thank Doug Haywick for producing Fig 1. We also thank Shawn Garner, Tim Hain, Lauren Kordonowy, and Lindsay Havens, and three anonymous reviewers for helpful comments on the manuscript.Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning.Yeshttp://www.plosone.org/static/editorial#pee

    Proximate and ultimate causes of male courtship behavior in Golden-collared Manakins

    No full text
    Males of the Golden-collared Manakin (Manacus vitellinus) perform elaborate courtship displays that are among the most spectacular in the animal kingdom. During an extended breeding season, male manakins aggregate in leks, where each male clears a small court on the forest floor to perform his displays. These behaviours are driven by sexual selection, which is particularly intense in lekking species in which females choose their mate mainly on the basis of behavioural and morphological features. Over the last several years, we have studied the proximate and ultimate causes of the courtship behaviour of Golden-collared Manakins. We found that these behavioural specializations are accompanied by unique morphological and physiological adaptations involving muscular, neural, and hormonal systems. The control of courtship by androgens differs from that described in lekking species of temperate zones: manakins have elevated androgen levels at the beginning of the displaying season but low or variable levels for the following months, although displaying activity does not change. Detailed analyses of male courtship using high-speed videography show that the displays require amazing accuracy and neuromuscular coordination. Indeed, females mate preferentially with males who perform their displays at a faster pace while maintaining exquisite postural control. All together, these studies reveal evolutionary and physiological mechanisms that underlie the spectacular courtship displays of manakins
    corecore