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Abstract

Late Cretaceous Chisulryoung Volcanic Formation (CVF) in southeastern Korea contains four ash-flow ignimbrite units
(A1, A2, A3, and A4) and three intervening volcano-sedimentary layers (S1, S2, and S3). Reliable U-Pb ages obtained for
zircons from the base and top of the CVF were 72.8 ± 1.7 Ma and 67.7 ± 2.1 Ma, respectively. Paleomagnetic analysis
on pyroclastic units yielded mean magnetic directions and virtual geomagnetic poles (VGPs) as D/I = 19.1°/49.2°
(α95 = 4.2°, k = 76.5) and VGP = 73.1°N/232.1°E (A95 = 3.7°, N = 3) for A1, D/I = 24.9°/52.9° (α95 = 5.9°, k = 61.7) and
VGP = 69.4°N/217.3°E (A95 = 5.6°, N = 11) for A3, and D/I = 10.9°/50.1° (α95 = 5.6°, k = 38.6) and VGP = 79.8°N/
242.4°E (A95 = 5.0°, N = 18) for A4. Our best estimates of the paleopoles for A1, A3, and A4 are in remarkable agreement
with the reference apparent polar wander path of China in late Cretaceous to early Paleogene, confirming that
Korea has been rigidly attached to China (by implication to Eurasia) at least since the Cretaceous. The compiled
paleomagnetic data of the Korean Peninsula suggest that the mode of clockwise rotations weakened since the
mid-Jurassic. Such interesting variation of vertical rotations in the Korean Peninsula might result from the
strike-slip motions of major faults developed in East Asia (the Tancheng-Lujiang fault to the northwest and the
Korea-Taiwan strait fault to the southeast), near-field tectonic forcing of the subducting Pacific Plate beneath the
Eurasian Plate, and far-field expressions of the India-Asia collision.
Background
East Asia is one of the world’s poorly determined regions
for reconstruction of Pangea (Besse and Courtillot 1991,
2002; Yang and Besse 2001; Enkin et al. 1992; Ma et al.
1993; Gilder et al. 2008; Pei et al. 2011). A robust recon-
struction of Laurasia is possible only when Mesozoic
paleogeography of the Korean Peninsula is well estab-
lished, bridging the two sides of the Chinese cratons
(e.g., Lee et al. 1987; Kim and Van der Voo 1990; Zhao
et al. 1994, 1999; Doh et al. 1999, 2002; Park et al. 2003,
2005, 2007; Kim et al. 2009). The primary goal of
paleomagnetism is to uncover information about the
history of deformation and vertical rotations in geologic
units. The present study is intended to analyze the vari-
ations in vertical axis block rotations in the Korean
Peninsula with respect to more stable Chinese cratons.
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The Korean Peninsula is located at the eastern end of
the Eurasian Plate (Figure 1, inset), bounded by two
major NNE-striking sinistral strike-slip fault systems of
the Tancheng-Lujiang (Tan-Lu in abbreviation) fault to
the northwest and the Korea-Taiwan strait fault to the
southeast (Figure 1, inset). In particular, the Tan-Lu fault
starts at eastern China and stretches north side of the
Sino-Korean block over a distance of 1,000 km (Figure 1,
inset). The southern part of the Korean Peninsula has
five main tectonic units of Gyeonggi massif (GM),
Ogcheon fold belt (OB), Ryongnam massif (RM),
Gyeongsang Basin (GB), and Pohang Basin (PB) (e.g.,
Cluzel et al. 1991) (Figure 1). On the basis of combined
paleomagnetic and paleontological analyses, it has been
suggested that most tectonic units in Korea may have an
affinity with South China while RM may have an affinity
with North China (e.g., Kobayashi 1966, 1967; Doh and
Piper 1994; Lee et al. 1996; Uno 1999; Uno and Chang
2000; Doh et al. 2002; Uno et al. 2004).
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Figure 1 Location map of Korea (inset) and the Chisulryoung Volcanic Formation (CVF) outcrop pattern after Park (1990). The CVF has four ash-flow
ignimbrite units (A1, A2, A3, and A4) and three intervening volcano-sedimentary layers (S1, S2, and S3). Yellow circles, locations of paleomagnetic
sampling; GM, Gyeonggi massif; OB, Ogcheon fold belt; RM, Ryongnam massif; GB, Gyeongsang Basin; PB, Pohang Basin.
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The present study deals with the paleomagnetism of
late Cretaceous volcanic rocks in GB (Figure 1). Located
in the southeastern part of the Korean Peninsula, GB is
the largest non-marine sedimentary basin in the Sino-
Korean block. Paleomagnetic investigation of GB is
necessary to enhance our understanding of the Mesozoic
tectonic evolution of the Sino-Korean block. In the
present study, we report paleomagnetic data along with
high-precision zircon U-Pb dating from the Chisulryoung
Volcanic Formation (CVF) in GB, which can shed some
light on the late Cretaceous tectonism in Korea, as well as
possible tectonic correlation with the Eurasian Plate.

Methods
Geology
The CVF of southeastern Korea forms an extrusive out-
lier (6 × 3 km) around Chisulryoung Mountain (765 m)
(pink circle in Figure 1 inset). According to Reedman
et al. (1987), the CVF was formed by two sequential
cycles of subaerial explosive silicic volcanic activities in
which an emplacement of thick ash-flows intercalated
with volcanoclastic sedimentary rocks. It is typically a
basin, circular in form whose underlying sedimentary
rocks inclined with centripetal dips (Figure 1). Overall,
the CVF lies within a broad structural basin regarded as
a down sag caldera (Reedman et al. 1989).
Figure 2 Schematic section illustrating relative stratigraphic positions of th
age determinations.
The CVF comprises mainly densely to weakly welded
acidic ash-flow tuffs which have been divided into four
members (A1, A2, A3, and A4) and three intervening
volcano-sedimentary members (S1, S2, and S3) accord-
ing to their crystal content, grain-size distribution of
pyroclastic material, and degree of consolidation and
welding (Park and Kim 1985a, b; Park 1990) (Figure 2).
As a first major eruption cycle, a sequence of lower
members (A1, S1, A2, S2, and A3) predates the intrusion
of the Cheogwari granodiorite whose hornblende K-Ar
age is 76.3 ± 11.7 Ma (Reedman et al. 1989). The A4
member is a product of the second eruption cycle, and
the S3 member represents sedimentations that occurred
between the two major eruption cycles (Reedman et al.
1989; Park 1990). To put it differently, the two major
eruption cycles were separated by the intrusion of the
Cheogwari granodiorite (Reedman et al. 1989). In par-
ticular, the A4 member comprises approximately 100 to
120 m of loosely welded pumice-rich tuff (A4a) overlain
by about 80 to 120 m of densely welded high-density
lithic-rich tuff (A4b) (Figure 2). The second eruptive
cycle was terminated with the intrusion of the Gadaeri
granite whose biotite K-Ar age is 63.9 ± 1.8 Ma (Reedman
et al. 1989) (Figure 2). An intrusive welded tuff (IWT)
plug, with an elliptical cross section (700 × 400 m), has a
eutaxitic texture nearly parallel to its subvertical contacts.
e CVF, lithologies, tentative thickness, and available
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The IWT cuts; hence, it post-dates the Cheogwari
granodiorite. Indeed, the IWT yielded sericite K-Ar age
of 65.1 ± 1.8 Ma, slightly older than the emplacement
age of the Gadaeri granite (Reedman et al. 1987, 1989;
Park 1990).

Sampling and laboratory procedures
Rheomorphic ash-flow tuffs occur as hot lateral flows
invade the pumice deposits, producing extreme flatten-
ing and stretching of dense ignimbrites. Whenever
possible, we avoided rheomorphic ignimbrites as they
might compromise reliable remanence record. Fifty-four
oriented samples were taken from six sites by in situ
drilling. These sites are distributed in the western part of
the study area where slopes are relatively gentle. In 24
sites where drilling was inapplicable due to high topog-
raphy and steep slopes along the mountain side, oriented
block samples were collected. Six to ten 2.5-cm cylin-
drical specimens of each sample were alternating-field
(AF) demagnetized in 12 steps to 90 mT using a Mol-
spin AF demagnetizer (ASC Scientific, Carlsbad, CA,
USA). In addition, other specimens were thermally
demagnetized, usually in 50°C steps to 500°C and then
in smaller steps to 700°C using a non-inductive thermal
demagnetizer (ASC Scientific Model TD-48, ASC Scien-
tific, Carlsbad, CA, USA). Optimum demagnetization
step to calculate a mean remanence direction was
defined as that producing the minimum dispersion in
direction. Sample storage, demagnetization, and spinner
magnetometer measurements were performed in a
magnetically shielded space with a nominal ambient
field of <200 nT at the Paleomagnetism Laboratory,
Korea University.
To date, the relative age sequence of the CVF was

indirectly established on the basis of the K-Ar ages de-
termined from the intervening intrusive granitoids
(Figure 2). In an attempt to directly determine the age of
the pyroclastic units, high-precision age dating was
carried out. At first, zircons from the A1, A4, and IWT
were dated by the U-Pb method using the Sensitive High
Resolution Ion MicroProbe (SHRIMP) at the Korea
Basic Science Institute. Details of operation and data
reduction protocols were similar to those described by
Yi et al. (2012). Zircons were extracted from crushed
and pulverized samples, using standard magnetic and
density separation. Cathodoluminescence (CL) and back-
scattered electron images were obtained using a scanning
electron microscope (SEM) of JEOL 6610LV (JEOL Ltd.,
Akishima-shi, Japan). Zircon inclusions were identified by
using an INCA x-act energy-dispersive spectrometer
(Oxford Instruments, Abingdon, UK). Concentrations of U
and Th were calculated with reference to SL13 (U = 238
ppm). The measured ratio of 206Pb/238U was calibrated for
the standard of 1.1-Gyr-old FC1 zircon (Paces and Miller
1993). Concordia diagrams and age determination were
made after excluding the outliers on the basis of the t-test
using two commonly used programs of Squid 2.50 and
Isoplot 3.71 (Ludwig 2008, 2009). Second, high-precision
40Ar/39Ar step-heating analyses were performed at the
Argon Geochronology Laboratory, Oregon State University
using the freshest matrix crushed from rock samples.
Seven zircon grains of A1 member yielded concordant

U-Pb ages of 72.8 ± 1.7 Ma with a mean square of the
weighted deviates (MSWD) of 0.93 (Figure 3a). Similarly,
eight zircon grains of A4 member displayed concordant
U-Pb ages of 67.7 ± 2.1 Ma with a MSWD (York 1969)
of 1.80 (Figure 3b). However, we failed to obtain reliable
concordant U-Pb ages from the IWT because of enor-
mously high concentrations of uranium. We were also
unable to retrieve scientifically meaningful 40Ar/39Ar
ages for the rocks in the CVF. For instance, both step-
heating plateau age spectra (Figure 3c) and inverse
isochron regression fittings (Figure 3d) are all unaccept-
able with overestimated errors. Despite limited success,
U-Pb zircon ages of A1 (72.8 ± 1.7 Ma) and A4 (67.7 ±
2.1 Ma) confirm that the two major eruption cycles of
the CVF were separated by the intrusion of the Cheog-
wari granodiorite (hornblende K-Ar age of 76.3 ± 11.7
Ma) and the magmatic activity of the CVF was termi-
nated with the intrusion of the Gadaeri granite (biotite
K-Ar age of 63.9 ± 1.8 Ma).

Results
Hysteresis loops were measured from 44 rock chips on an
alternating gradient force magnetometer at the University
of Toronto, Canada. Values of saturation magnetization
(Ms), saturation remanence (Mr), and coercive force (Bc)
were determined from hysteresis loops. Hysteresis param-
eters were determined after appropriate paramagnetic
slope correction. Representative hysteresis loops are given
in Figure 4. In most samples, hysteresis loops for fine-
to coarse-grained magnetite are typically observed
(Figure 4a,b). For example, sample A4-30-4 shows a
high remanence ratio (Mr/Ms) of ≈0.4, similar to near
single-domain (SD) or fine pseudo-single-domain (PSD)
characteristics (Figure 4a). On the other hand, A4-17-5
shows more multidomain (MD)-like behavior of low rem-
anence ratio of ≈0.2 (Figure 4b). High coercivities over
100 mT and high remanence ratio over 0.5 from the four
chips of site 27 suggest the presence of highly coercive
mineral other than magnetite (Figure 4c). In a Néel (1955)
plot of remanence ratio (Mr/Ms) versus coercivity (Bc), a
total of 40 representative magnetite-containing chips
follow the trend of the SD-MD mixing lines (Figure 4d)
according to the criteria of Tauxe et al. (2002).
Demagnetization results were displayed in geographic

coordinates in terms of total intensity variation of
magnetization, equal-area stereographic plot, and vector
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projections using a commonly used PuffinPlot (Lurcock and
Wilson 2012). The characteristic remanent magnetization
(ChRM) directions were calculated from a principal
component analysis (Kirschvink 1980). Virtual geomag-
netic poles (VGPs) were calculated for each site, and
mean paleomagnetic poles and their associated confi-
dence limits were accordingly defined. Directions of
natural remanent magnetization (NRM) prior to
demagnetization treatments were slightly dispersed for
each site, suggesting a weak viscous magnetic overprint.
Magnetically weak samples yielded either an aberrant
direction or a direction that progressively approaches
the characteristic direction but fails to achieve a stable
end point. These aberrant samples (see Table 1) were
not used in mean calculation. In a few sites, a great
circle method (McFadden and McElhinny 1988) was
applied in mean calculation whenever NRM directions
follow a great circle demagnetization trajectory.

The first eruptive cycle (A1, A2, and A3)
Forty-six oriented samples were collected at six sites
from the first eruptive cycle: two (sites 11 and 18) in A1
and four (sites 1, 2, 3, and 4) in A3 (Figures 1 and 2). A
weak spurious magnetization is removed usually <10
mT or 150°C, after which a stable ChRM is identified
from 10 to 90 mT (Figure 5a) or 100°C to 580°C
(Figure 5b). The maximum unblocking temperature of
580°C reveals magnetite as a main remanence carrier
(Figure 5b). The stable components are uniformly of
normal polarity both for A1 and A3 (Figure 5, Table 1).
In A3, one of the four sites (site 4) has anomalous but

well-clustered directions (Table 1). It is unclear whether
site 4 records an isolated yet unidentified block movement
or a short-lived geomagnetic polarity excursion.
Nonetheless, we discarded the results of site 4 in
mean calculation (Table 1). Site mean directions and
corresponding paleopoles are D/I = 19.1°/49.2° (α95 =
4.2°, k = 76.5) and VGP = 73.1°N/232.1°E (A95 = 3.7°,
N = 3) for A3.
The mean results for A1 were based on two sites (N = 2;

sites 11 and 18). As the Fisher site mean determinations
require at least three (i.e., N ≥ 3) individual paleomagnetic
mean directions, we used combined specimen mean direc-
tions (N = 11; N = 4 for site 11 and N = 7 for site 18).
Combined mean directions and corresponding paleopoles
are D/I = 24.9°/52.9° (α95 = 5.9°, k = 61.7) and VGP = 69.4°
N/217.3°E (A95 = 5.6°, N = 11) for A3 (Table 1).
For A2, 14 samples were collected at two sites (A2-1

and A2-2 in Figure 1). Unfortunately, all the samples
were weakly magnetized and become fractured during
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thermal demagnetization. Hence, we were unable to re-
trieve reliable paleomagnetic results from A2.

Intrusive welded tuff
Forty-four oriented samples were collected at five sites
(sites 12, 13, 14, 15, and 16) from the IWT. All the
samples exhibited stable demagnetization behavior
(Figure 6). During AF demagnetization, the median
destructive field (MDF) was over 30 to 40 mT
(Figure 6a). Thermal demagnetization data show nar-
row unblocking temperature spectra of 500°C to 600°C,
consistent with a fine-grained magnetite as the
Table 1 Paleomagnetic results in the first eruption cycle

Member Site ϕs λs n1/n2 Di

A3 1 129.14 35.40 6/10 16.2

2 129.14 35.40 5/7 13.8

3 129.14 35.40 5/7 23.2

4a 129.14 35.39 9/9 134.7

Mean 19.1

A1 11 129.15 35.41 4/8 16.6

18 129.14 35.41 7/11 29.8

Mean 24.9

ϕp/λp, sampling site longitude/latitude; n1/n2, number of samples used in calculatin
k, precision parameter; α95, 95% confidence limit; ϕp/λp, VGP longitude/latitude; dp/
mean pole lies within 95% confidence. aNot included in mean calculation.
principal carrier of magnetic remanence (Figure 6b).
Paleomagnetic mean directions and paleopoles for IWT
are D/I = 285.7°/82.3° (α95 = 5.3°, k = 17.6) and VGP =
38.1°N/110.5°E (A95 = 10.1°, N = 5) (Table 2).
Paleomagnetic data from the IWT showed high

magnetic inclination and radially scattered magnetic
declination (Table 2). Rheomorphic ash-flow tuffs
develop preferred alignment of pyroclasts that oc-
curred shortly after the emplacement of laminar vis-
cous flow (Wolff and Wright 1981). Then, it is likely
that high magnetic inclination of IWT results from
rheomorphism (Uno et al. 2013).
Ii k α95 ϕp λp dp dm

48.0 87.8 7.2 239.2 74.9 6.2 9.4

49.3 59.6 10.0 239.5 77.3 8.8 13.3

50.3 65.4 9.5 225.2 70.2 8.5 12.7

15.0 28.9 9.7 183.1 −29.4 5.1 10.0

49.2 76.5 4.2 232.1 73.1 A95= 3.7

52.2 82.2 10.2 225.1 76.0 9.6 14.0

53.1 59.7 7.9 214.5 65.5 7.6 11.0

52.9 61.7 5.9 217.3 69.4 A95= 5.6

g means/demagnetized at each site; Di/Ii, mean declination/inclination;
dm, confidence limits; A95, the angular radius of an ellipse within which the
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Table 2 Paleomagnetic results in the second eruption cycle

Member Site ϕs λs n1/n2 Di Ii K α95 ϕp λp dp dm

A4 5a 129.15 35.40 4/6 138.8 −54.7 24.9 18.8 263.7 −56.8 27.4 32.1

6 129.15 35.40 4/5 17.5 13.7 27.1 18.0 275.6 57.3 9.4 18.4

7 129.15 35.41 6/7 27.2 51.0 24.8 11.5 220.7 67.1 10.5 15.6

8 129.15 35.41 6/7 36.5 33.0 60.5 8.7 237.8 53.3 5.6 9.9

9 129.15 35.41 5/6 36.1 21.3 35.7 13.0 246.9 49.2 7.2 13.7

10 129.15 35.41 4/6 20.5 23.4 24.4 19.0 265.4 60.3 10.8 20.2

17 129.14 35.41 11/11 346.1 48.9 104.7 4.5 17.5 77.0 3.9 5.9

19 129.14 35.41 14/18 346.2 36.5 15.5 10.4 351.6 70.6 7.1 12.1

20 129.14 35.41 17/23 358.2 32.3 37.6 5.9 314.7 72.1 3.8 6.7

21 129.15 35.41 24/24 16.4 36.2 36.0 5.0 261.5 69.0 3.4 5.8

22 129.14 35.41 14/14 359.4 41.3 16.6 10.1 311.9 78.3 7.5 12.3

23 129.14 35.41 9/21 201.3 −41.6 12.2 15.4 65.3 −68.3 11.5 18.8

24 129.14 35.41 10/16 192.2 −53.0 8.3 17.8 46.0 −79.8 17.1 24.7

25 129.14 35.41 10/13 357.0 48.4 25.5 9.8 332.8 83.5 8.4 12.9

26 129.15 35.39 13/14 186.6 −46.9 10.2 13.7 89.7 −80.8 11.4 17.7

27 129.15 35.39 19/22 192.2 −55.3 15.4 8.8 33.0 −80.1 8.9 12.5

28 129.15 35.39 14/14 11.1 60.7 22.1 8.6 180.0 79.3 10.0 13.1

29 129.15 35.39 8/10 3.9 32.3 23.5 11.7 297.2 71.8 7.4 13.2

30 129.15 35.40 17/19 2.7 30.9 30.3 6.6 301.1 71.1 4.1 7.4

Mean Normal 10.7 50.0 31.1 7.2 243.4 79.9 A95= 6.4

Mean Reversed 192.3 −39.7 112.7 8.7 266.0 −73.3 A95= 6.3

Mean 10.9 50.1 38.6 5.6 242.4 79.8 A95= 5.0

IWT 12 129.16 35.39 9/9 99.9 84.2 56.3 6.9 142.6 32.7 13.4 13.6

13 129.16 35.39 10/10 240.4 70.6 12.7 14.1 98.1 14.0 21.2 24.4

14 129.16 35.38 10/10 303.2 76.3 27.5 9.4 97.5 45.7 16.1 17.4

15 129.16 35.38 8/8 338.4 73.8 22.6 11.9 106.1 61.8 19.3 21.4

16 129.16 35.38 7/7 265.5 83.0 47.9 8.8 112.7 33.2 16.8 17.2

Mean 285.7 82.3 17.6 5.3 110.5 38.1 A95= 10.1

ϕp/λp, sampling site longitude/latitude; n1/n2, number of samples used in calculating means/demagnetized at each site; Di/Ii, mean declination/inclination; k,
precision parameter; α95, 95% confidence limit; ϕp/λp, VGP longitude/latitude; dp/dm, confidence limits; A95, the angular radius of an ellipse within which the mean
pole lies within 95% confidence. aNot included in mean calculation.
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The second eruptive cycle (A4)
A total of 242 oriented samples were collected at 19 sites
(sites 5, 6, 7, 8, 9, 10, 17, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, and 30) from the second eruptive cycle.
Progressive AF and thermal demagnetization isolated a
well-defined stable magnetization (Figure 7). An initial
plateau with relatively high MDF in AF demagnetization
(Figure 7a) and a sharp drop of magnetization near 580°
C in thermal demagnetization (Figure 7b) are character-
istics of fine-grained magnetite.
A unique demagnetization behavior was observed

from the seven samples in site 27 (Figure 8). These
samples are completely resistant to AF demagnetization
(Figure 8a) and have maximum unblocking temperatures
approximately 680°C (Figure 8b), suggesting that the
remanence is carried by hematite. The mean direction of
these seven hematite-bearing samples is consistent with
that of twelve other magnetite-bearing samples from the
same sampling site in 95% confidence limits. It is diffi-
cult to envisage a low-temperature chemical process that
would generate both magnetite and hematite. It is pos-
sible that a high-temperature deuteric oxidation formed
both magnetite and hematite (e.g., Schlinger et al. 1991)
during the early stage of emplacement. If so, the NRM
in site 27 is a combination of thermoremanent
magnetization (TRM) carried by magnetite and thermo-
chemical remanent magnetization (TCRM) acquired
during high-temperature oxidation of magnetite to
hematite (e.g., May et al. 1986).
In A4, the ChRM directions show both normal and

reversed polarities (Table 2). For instance, the ChRM
directions of four sites (sites 23, 24, 26, and 27) are
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reversely magnetized, while those of fourteen sites (sites
6, 7, 8, 9, 10, 17, 19, 20, 21, 22, 25, 28, 29, and 30) are
normal (Table 2). Paleomagnetic site mean directions and
paleopoles are D/I = 10.7°/50.0° (α95 = 7.2°, k = 31.1) and
VGP = 79.9°N/243.4°E (A95 = 6.4°, N = 14) for normal
polarity and D/I = 192.3°/−39.7° (α95 = 8.7°, k = 112.7) and
VGP = 73.3°S/266.0°E (A95 = 6.3°, N = 4) for reversed
polarity (Table 2). The mean ChRM directions from four-
teen normal polarity sites are anti-parallel to those of four
reversed polarity sites (Table 2). Indeed, the ChRM direc-
tions pass the reversal test for paleomagnetic stability
(Figure 9). When combined, the paleomagnetic site
mean direction and paleopole for the entire A4 are
D/I = 10.9°/50.1° (α95 = 5.6°, k = 38.6) and VGP =
79.8°N/242.4°E (A95 = 5.0°, N = 18) (Table 2).

Discussion
High-precision U-Pb zircon age obtained from the base
of the CVF (i.e., A1) is 72.8 ± 1.7 Ma (Figures 2 and 3).
U-Pb zircon geochronology is unavailable for the overly-
ing sequential tuff layers and tuffaceous sediments for
the first eruption cycle. On the basis of normal polarities
observed for both A1 and A3, the first eruption cycle of
the CVF can be constrained as chron 32N in late
Campanian. On the other hand, U-Pb zircon age of 67.7 ±
2.1 Ma was obtained from the stratigraphically higher A4
(Figure 2). While magnetite-bearing tuffs retained TRM of
normal polarity, hematite-containing tuffs preserved
TCRM of reversed polarity (Figure 8, Table 2). Existence
of dual polarities in the same site implies that the second
eruption cycle of the CVF may record polarity transition
from chron C31N to C30R in late Maastrichitian. Overall,
the CVF reflects late Cretaceous volcanism that definitely
predates the Paleogene (Figure 2).
Paleomagnetic stability of pyroclastics is influenced by

the structural correction to restore the beds to horizon-
tal, degree of bedding tilts, and the caldera affinity. In
0
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Figure 9 Paleomagnetic site mean directions of A4 pass the reversal test.
the present study, no structural correction was employed
in analyzing data. Determining systematic variation of
attitudes of the intervening volcanic-sedimentary layers
was unavailable because the horizontal continuity of A1,
S1, A2, S2, A3, and S3 was poor. Instead, we relied on
the between- or among-site directional consistency of
paleomagnetic directions as a sideline evidence in asses-
sing the quality of paleomagnetic directions. For instance,
it is obvious that paleomagnetic mean direction is strongly
influenced by the caldera affinity as IWT showed high in-
clination (Table 2). Therefore, the paleomagnetic mean
direction of IWT was excluded in further tectonic discus-
sion. On the other hand, results from A4 suggest that
paleomagnetic directions were less relevant to the dis-
tances from sampling sites to volcanic-sedimentary
boundaries or local faults (Tables 1 and 2).
Due to their inherent sporadic nature, pyroclastic

rocks fossilize spot-readings of geomagnetic field vector
during volcanic eruptions. As CVF does not reflect
massive ever-lasting eruptions, it is difficult to imagine
that secular variation is completely averaged out. How-
ever, the presence of dual polarities in flow A4 provides
a strong rationale for the averaging out of secular vari-
ation (Figure 9).
The paleomagnetic poles of A1, A3, and A4 show a

counterclockwise swing in the third quadrant (Figure 10).
The apparent polar wander path (APWP) of CVF covers
almost 60° swing of VGP longitude (from eastern Alaska
to northern Greenland) but about 10° increase of VGP
latitude (Figure 10). VGP positions of A1 and A3 fell
squarely well on the paleopoles of China in Cretaceous
age (Gilder and Courtillot 1997; Huang et al. 2007). In
particular, the paleopole of A3 is statistically identical to
a recently refined late Cretaceous reference pole for the
stable South China (Li et al. 2013). On the other hand,
the paleopole of A4 is statistically indistinguishable to
the paleopoles of China in early Tertiary (Zhao et al.
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1994), Paleogene to Neogene (Gilder and Courtillot
1997), and/or late Tertiary (Huang et al. 2004). The
Cretaceous paleopoles of North China Block (NCB) and
South China Block (SCB) are the result of averaging
both Early and Late Cretaceous paleopoles of the two
blocks and thus mask or smooth the details of the rela-
tive displacement between the Korean Peninsula and the
NCB and SCB (Figure 10). In summary, a comparison of
the paleomagnetic poles of the CVF with respect to
more stable Chinese cratons suggests that neither
significant shortening nor rotations are necessary.
As far as the present study is concerned, the

paleomagnetic poles of the CVF show excellent coherence
with coeval poles from China, suggesting that Korea has
been rigidly attached to China (by implication to Eurasia)
at least since the Cretaceous (Figure 10). However, earlier
paleomagnetic studies on Mesozoic to Tertiary rocks from
the Korean Peninsula showed vertical rotations with
respect to China (e.g., Lee et al. 1987; Kim and Van der
Voo 1990; Doh and Piper 1994; Zhao et al. 1994, 1999;
Doh et al. 1999, 2002; Lee et al. 1999; Zhao et al. 1999;
Uno 2000; Park et al. 2003, 2005, 2007; Kim et al. 2009).
Then, viable solutions to explain the various degrees of
vertical rotations observed in previous paleomagnetic
investigations required that individual geologic terranes of
the Korean Peninsula formed in Mesozoic to Tertiary
experienced different degrees of vertical rotations.
To evaluate the tectonic evolution of the Korean

Peninsula, temporal evolution of vertical rotations be-
tween the observed and expected magnetic declination for
all the available paleopoles documented in the peer-
reviewed literature with modern paleomagnetic standards
was displayed (Figure 11). To estimate vertical rotation for
individual study, three commonly used reference poles
from China were assigned for Neogene (Zhao et al. 1994),
Paleogene to Cretaceous (Huang et al. 2007), and Jurassic
(Gilder et al. 1997). We limited vertical rotation analysis
extending only up to Jurassic because the collision
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between NCB and SCB was completed by the middle
Jurassic as their paleopoles are overlapping each other
(Huang and Opdyke 1991; Gilder et al. 1996; Gilder and
Courtillot 1997). If the Korean Peninsula was exposed to
constant tectonic forcing rather than episodic tectonic
processes since the Jurassic, then a linear variation of
vertical rotation is expected. Instead of a linear relation,
temporal evolution of vertical rotation tracks a half-cycle
of sinusoidal variation with the minimum clockwise
rotation at 60 to 70 Ma (Figure 11). Prior to 60 to 70 Ma,
the amount of clockwise rotations with respect to Chinese
reference poles steadily decreased with time (Figure 11).
The compiled data further suggest that the mode of clock-
wise rotations was even reversed to counterclockwise at
the end of the late Cretaceous. Then, a new regime of
clockwise rotations began to recover (Figure 11).
Plate motions would remain rather constant over long

time intervals. However, major tectonic changes, such as
reorganization of neighboring plate motions, alteration
of tectonic boundary, and opening of an ocean basin,
would leave small circle swath with respect to reference
Euler poles. Such cusps might be reflected as changes in
local vertical rotations (Figure 11). Then, what triggered
a sinusoidal swing of vertical rotations in the Korean
Peninsula at 60 to 70 Ma? Possible sources of tectonic
contributor would be the two major fault systems of the
Tancheng-Lujiang fault and the Korea-Taiwan strait fault
(several hundred kilometers away), the nearest subduc-
tion front of the Pacific Plate (over 1,000 km away), and
far-field expression of the India-Asia collision (over
4,000 km away) in order of increasing distance.
The first and nearest contributor may be the major faults
developed in East Asia. Indeed, the Korean Peninsula is
bounded by two major faults of the Tan-Lu fault to the
northwest and the Korea-Taiwan strait fault to the south-
east (Figure 1 inset). Both fault systems are northeast-
southwest trending sinistral in motion (Grimmer et al.
2002; Wang 2006). Such mega-sized sinistral faults
could have facilitated clockwise rotations of the Korean
Peninsula with respect to China, as in synthetic R-type
Riedel shear. Diminishing clockwise motion since the
Jurassic fits well with the period of active motion of
the Tan-Lu fault (Klimetz 1983). It should be noted
that similar clockwise rotations of paleomagnetic poles
were also observed in Benxi area, China (Uchimura
et al. 1996).
The second possible contributor would involve

changes in near-field tectonic forcing of the subducting
Pacific Plate beneath the Eurasian Plate. Although the
exact timing and location of Izanagi ridge subduction is
far from being perfectly resolved (Whittaker et al. 2007;
Seton et al. 2012), the Izanagi-Pacific ridge system is
estimated to have existed from 120 to 60 Ma (Rowley
2008; van der Meer et al. 2012). Timing of the
disappearance of the Izanagi-Pacific ridge system is con-
sistent with the change in the plate motion of the Pacific
from northwest (older than 62 Ma) to west (younger
than 62 Ma) (Butterworth et al. 2014). It is feasible that
westerly enhanced motion of the Pacific Plate around 60
to 70 Ma restored clockwise rotations of the Korean
Peninsula as the westerly subduction would accumulate
a dextral shear along the NE trend fault (Figure 11).
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Such a clockwise swing was probably weakened as the
new back-arc ocean is created between Japan and Korea
in Miocene (Figure 11).
A third probable contributor would be far-field expres-

sions of the India-Asia collision (Acton and Gordon
1989; Besse and Courtillot 1991; Vandamme et al. 1991;
Leech et al. 2005). As initially proposed by Zhao et al.
(1999), the Kula-Eurasia collision may influence the ver-
tical rotations of the Korean Peninsula.
Conclusions
On the basis of paleomagnetic analysis of the CVF, this
study demonstrates the following facts:

1. The weighted mean ages obtained by U-Pb zircon dat-
ing from the base/top of the CVF are 72.8 ± 1.7 Ma/
67.7 ± 2.1 Ma, respectively. Hence, the CVF reflects
late Cretaceous volcanism that predates the
Paleogene.

2. Reliable paleomagnetic information was extracted
from the late Cretaceous ignimbrites in Korea.
Paleomagnetic mean directions and paleopoles
are D/I = 19.1°/49.2° (α95 = 4.2°, k = 76.5) and
VGP = 73.1°N/232.1°E (A95 = 3.7°, N = 3) for
A1, D/I = 24.9°/52.9° (α95 = 5.9°, k = 61.7) and
VGP = 69.4°N/217.3°E (A95 = 5.6°, N = 11) for A3,
and D/I = 10.9°/50.1° (α95 = 5.6°, k = 38.6) and
VGP = 79.8°N/242.4°E (A95 = 5.0°, N = 18) for A4.

3. VGP positions of the CVF are statistically identical
to the reference poles from China in late Cretaceous
to early Paleogene, indicating that Korea has been
rigidly attached to China (by implication to Eurasia)
at least since the Cretaceous.

4. Earlier paleomagnetic investigations on Mesozoic to
Tertiary rocks from the Korean Peninsula suggest
that the degrees of clockwise rotations weakened
since the mid-Jurassic. Such variation might result
from the influence of two major nearby strike-slip
faults (the Tancheong-Luijang fault to the northwest
and the Korea-Taiwan strait fault to the southeast),
near-field tectonic forcing of subducting Pacific
Plate, and far-field expressions of the India-Asia
collision.
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