94 research outputs found

    Angiotensin II Requires Zinc and Downregulation of the Zinc Transporters ZnT3 and ZnT10 to Induce Senescence of Vascular Smooth Muscle Cells

    Get PDF
    Senescence, a hallmark of mammalian aging, is associated with the onset and progression of cardiovascular disease. Angiotensin II (Ang II) signaling and zinc homeostasis dysfunction are increased with age and are linked to cardiovascular disease, but the relationship among these processes has not been investigated. We used a model of cellular senescence induced by Ang II in vascular smooth muscle cells (VSMCs) to explore the role of zinc in vascular dysfunction. We found that Ang II-induced senescence is a zinc-dependent pathway mediated by the downregulation of the zinc transporters ZnT3 and ZnT10, which work to reduce cytosolic zinc. Zinc mimics Ang II by increasing reactive oxygen species (ROS), activating NADPH oxidase activity and Akt, and by downregulating ZnT3 and ZnT10 and inducing senescence. Zinc increases Ang II-induced senescence, while the zinc chelator TPEN, as well as overexpression of ZnT3 or ZnT10, decreases ROS and prevents senescence. Using HEK293 cells, we found that ZnT10 localizes in recycling endosomes and transports zinc into vesicles to prevent zinc toxicity. Zinc and ZnT3/ZnT10 downregulation induces senescence by decreasing the expression of catalase. Consistently, ZnT3 and ZnT10 downregulation by siRNA increases ROS while downregulation of catalase by siRNA induces senescence. Zinc, siZnT3 and siZnT10 downregulate catalase by a post-transcriptional mechanism mediated by decreased phosphorylation of ERK1/2. These data demonstrate that zinc homeostasis dysfunction by decreased expression of ZnT3 or ZnT10 promotes senescence and that Ang II-induced senescence is a zinc and ROS-dependent process. Our studies suggest that zinc might also affect other ROS-dependent processes induced by Ang II, such as hypertrophy and migration of smooth muscle cells

    Assessment of canal walls after biomechanical preparation of root canals instrumented with protaper universalTM rotary system

    Get PDF
    OBJECTIVE: The aim of this study was to examine the instrumented walls of root canals prepared with the ProTaper UniversalTM rotary system. MATERIAL AND METHODS: Twenty mesiobuccal canals of human first mandibular molars were divided into 2 groups of 10 specimens each and embedded in a muffle system. The root canals were transversely sectioned 3 mm short of the apex before preparation and remounted in their molds. All root canals were prepared with ProTaper UniversalTM rotary system or with NitiflexTM files. The pre and postoperative images of the apical thirds viewed with a stereoscopic magnifier (X45) were captured digitally for further analysis. Data were analyzed statistically by Fisher's exact test and Chi-square test at 5% significance level. RESULTS: The differences observed between the instrumented and the noninstrumented walls were not statistically significant (p<0.05). CONCLUSIONS: The NitiflexTM files and the ProTaper UniversalTM rotary system failed to instrument all the root canal walls
    • …
    corecore