85 research outputs found

    Incidence of epidural haematoma and neurological injury in cardiovascular patients with epidural analgesia/anaesthesia: systematic review and meta-analysis

    Get PDF
    BACKGROUND: Epidural anaesthesia is used extensively for cardiothoracic and vascular surgery in some centres, but not in others, with argument over the safety of the technique in patients who are usually extensively anticoagulated before, during, and after surgery. The principle concern is bleeding in the epidural space, leading to transient or persistent neurological problems. METHODS: We performed an extensive systematic review to find published cohorts of use of epidural catheters during vascular, cardiac, and thoracic surgery, using electronic searching, hand searching, and reference lists of retrieved articles. RESULTS: Twelve studies included 14,105 patients, of whom 5,026 (36%) had vascular surgery, 4,971 (35%) cardiac surgery, and 4,108 (29%) thoracic surgery. There were no cases of epidural haematoma, giving maximum risks following epidural anaesthesia in cardiac, thoracic, and vascular surgery of 1 in 1,700, 1 in 1,400 and 1 in 1,700 respectively. In all these surgery types combined the maximum expected rate would be 1 in 4,700. In all these patients combined there were eight cases of transient neurological injury, a rate of 1 in 1,700 (95% confidence interval 1 in 3,300 to 1 in 850). There were no cases of persistent neurological injury (maximum expected rate 1 in 4,600). CONCLUSION: These estimates for cardiothoracic epidural anaesthesia should be the worst case. Limitations are inadequate denominators for different types of surgery in anticoagulated cardiothoracic or vascular patients more at risk of bleeding

    Anticoagulants and the Propagation Phase of Thrombin Generation

    Get PDF
    The view that clot time-based assays do not provide a sufficient assessment of an individual's hemostatic competence, especially in the context of anticoagulant therapy, has provoked a search for new metrics, with significant focus directed at techniques that define the propagation phase of thrombin generation. Here we use our deterministic mathematical model of tissue-factor initiated thrombin generation in combination with reconstructions using purified protein components to characterize how the interplay between anticoagulant mechanisms and variable composition of the coagulation proteome result in differential regulation of the propagation phase of thrombin generation. Thrombin parameters were extracted from computationally derived thrombin generation profiles generated using coagulation proteome factor data from warfarin-treated individuals (N = 54) and matching groups of control individuals (N = 37). A computational clot time prolongation value (cINR) was devised that correlated with their actual International Normalized Ratio (INR) values, with differences between individual INR and cINR values shown to derive from the insensitivity of the INR to tissue factor pathway inhibitor (TFPI). The analysis suggests that normal range variation in TFPI levels could be an important contributor to the failure of the INR to adequately reflect the anticoagulated state in some individuals. Warfarin-induced changes in thrombin propagation phase parameters were then compared to those induced by unfractionated heparin, fondaparinux, rivaroxaban, and a reversible thrombin inhibitor. Anticoagulants were assessed at concentrations yielding equivalent cINR values, with each anticoagulant evaluated using 32 unique coagulation proteome compositions. The analyses showed that no anticoagulant recapitulated all features of warfarin propagation phase dynamics; differences in propagation phase effects suggest that anticoagulants that selectively target fXa or thrombin may provoke fewer bleeding episodes. More generally, the study shows that computational modeling of the response of core elements of the coagulation proteome to a physiologically relevant tissue factor stimulus may improve the monitoring of a broad range of anticoagulants

    The potential benefits of low-molecular-weight heparins in cancer patients

    Get PDF
    Cancer patients are at increased risk of venous thromboembolism due to a range of factors directly related to their disease and its treatment. Given the high incidence of post-surgical venous thromboembolism in cancer patients and the poor outcomes associated with its development, thromboprophylaxis is warranted. A number of evidence-based guidelines delineate anticoagulation regimens for venous thromboembolism treatment, primary and secondary prophylaxis, and long-term anticoagulation in cancer patients. However, many give equal weight to several different drugs and do not make specific recommendations regarding duration of therapy. In terms of their efficacy and safety profiles, practicality of use, and cost-effectiveness the low-molecular-weight heparins are at least comparable to, and offer several advantages over, other available antithrombotics in cancer patients. In addition, data are emerging that the antithrombotics, and particularly low-molecular-weight heparins, may exert an antitumor effect which could contribute to improved survival in cancer patients when given for long-term prophylaxis. Such findings reinforce the importance of thromboprophylaxis with low-molecular-weight heparin in cancer patients

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore