22 research outputs found

    Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress

    Get PDF
    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the ‘oligoprotective' effects of CBD during inflammation

    Visualizing the Distribution of Synapses from Individual Neurons in the Mouse Brain

    Get PDF
    BACKGROUND:Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons. METHODS AND FINDINGS:In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP) in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs). In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC) layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs. CONCLUSIONS:The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits

    Spatial patterns of mercury in biota of Adirondack, New York lakes

    Get PDF
    We studied the spatial distribution patterns of mercury (Hg) in lake water, littoral sediments, zooplankton, crayfish, fish, and common loons in 44 lakes of the Adirondacks of New York State, USA, a region that has been characterized as a “biological Hg hotspot”. Our study confirmed this pattern, finding that a substantial fraction of the lakes studied had fish and loon samples exceeding established criteria for human and wildlife health. Factors accounting for the spatial variability of Hg in lake water and biota were lake chemistry (pH, acid neutralizing capacity (ANC), percent carbon in sediments), biology (taxa presence, trophic status) and landscape characteristics (land cover class, lake elevation). Hg concentrations in zooplankton, fish and common loons were negatively associated with the lake water acid-base status (pH, ANC). Bioaccumulation factors (BAF) for methyl Hg (MeHg) increased from crayfish (mean log10 BAF = 5.7), to zooplankton (5.9), to prey fish (6.2), to larger fish (6.3), to common loons (7.2). MeHg BAF values in zooplankton, crayfish, and fish (yellow perch equivalent) all increased with increasing lake elevation. Our findings support the hypothesis that bioaccumulation of MeHg at the base of the food chain is an important controller of Hg concentrations in taxa at higher trophic levels. The characteristics of Adirondack lake-watersheds (sensitivity to acidic deposition; significant forest and wetland land cover; and low nutrient inputs) contribute to elevated Hg concentrations in aquatic biota

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Selective oviposition of the mayfly Baetis bicaudatus

    Get PDF
    Abstract Selective oviposition can have important consequences for recruitment limitation and population dynamics of organisms with complex life cycles. Temporal and spatial variation in oviposition may be driven by environmental or behavioral constraints. The goals of this study were to: (1) develop an empirical model of the substrate characteristics that best explain observed patterns of oviposition by Baetis bicaudatus (Ephemeroptera), whose females lay eggs under rocks protruding from high-elevation streams in western Colorado; and (2) test experimentally selective oviposition of mayfly females. We surveyed the number and physical characteristics of potential oviposition sites, and counted the number and density of egg masses in different streams of one watershed throughout two consecutive flight seasons. Results of surveys showed that variability in the proportion of protruding rocks with egg masses and the density of egg masses per rock were explained primarily by seasonal and annual variation in hydrology, and variation in geomorphology among streams. Moreover, surveys and experiments showed that females preferred to oviposit under relatively large rocks located in places with high splash associated with fast current, which may provide visual, mechanical or both cues to females. Experiments also showed that high densities of egg masses under certain rocks were caused by rock characteristics rather than behavioral aggregation of ovipositing females. While aggregations of egg masses provided no survival advantage, rocks selected by females had lower probabilities of desiccating during egg incubation. Our data suggest that even when protruding rocks are abundant, not all rocks are used as oviposition sites by females, due to female selectivity and to differences in rock availability within seasons, years, or streams depending on variation in climate and hydrogeomorphology. Therefore, specialized oviposition behavior combined with variation in availability of quality oviposition substrata has the potential to limit recruitment of this species

    Genetic Labeling of Synapses

    No full text
    A major challenge in neuroscience is to unravel how the synaptic contacts between neurons give rise to brain circuits. A number of techniques have been developed to visualize the synaptic organization of neurons. In this chapter, we focus on genetic methods to mark specific types of synapses so that synaptic sites can be visualized throughout the entire dendritic or axonal arbor of single neurons. Genetic synaptic labeling can be achieved by cell-type-specific viral or transgenic delivery of synaptic proteins tagged by fluorescent proteins. Sparse genetic labeling of neurons permits semiautomated quantification of the distribution and densities of selected types of synapses in segregated domains of the axonal and dendritic trees. These approaches can reduce the complexity and ambiguity of attributing synaptic sites to unravel principles of the synaptic organization of identified neuronal types in the circuit
    corecore