47 research outputs found

    Radiation-pressure cooling and optomechanical instability of a micro-mirror

    Get PDF
    Recent experimental progress in table-top experiments or gravitational-wave interferometers has enlightened the unique displacement sensitivity offered by optical interferometry. As the mirrors move in response to radiation pressure, higher power operation, though crucial for further sensitivity enhancement, will however increase quantum effects of radiation pressure, or even jeopardize the stable operation of the detuned cavities proposed for next-generation interferometers. The appearance of such optomechanical instabilities is the result of the nonlinear interplay between the motion of the mirrors and the optical field dynamics. In a detuned cavity indeed, the displacements of the mirror are coupled to intensity fluctuations, which modifies the effective dynamics of the mirror. Such "optical spring" effects have already been demonstrated on the mechanical damping of an electromagnetic waveguide with a moving wall, on the resonance frequency of a specially designed flexure oscillator, and through the optomechanical instability of a silica micro-toroidal resonator. We present here an experiment where a micro-mechanical resonator is used as a mirror in a very high-finesse optical cavity and its displacements monitored with an unprecedented sensitivity. By detuning the cavity, we have observed a drastic cooling of the micro-resonator by intracavity radiation pressure, down to an effective temperature of 10 K. We have also obtained an efficient heating for an opposite detuning, up to the observation of a radiation-pressure induced instability of the resonator. Further experimental progress and cryogenic operation may lead to the experimental observation of the quantum ground state of a mechanical resonator, either by passive or active cooling techniques

    Quantum Measurement Theory in Gravitational-Wave Detectors

    Get PDF
    The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in Relativit

    Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli)

    Get PDF
    Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.Peer ReviewedPostprint (published version

    Gravitational Wave Detection by Interferometry (Ground and Space)

    Get PDF
    Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future "third generation" gravitational wave detectors, such as the Einstein Telescope (ET), will be discussed.Comment: Published in Living Reviews in Relativit

    Circovirus-like infection in a southern black-backed gull (Larus dominicanus)

    No full text
    A juvenile black-backed gull (Larus dominicanus) from the Manawatu region of New Zealand was found to have chronic airsacculitis due to Aspergillus spp. Histologically, there was moderately severe inflammation in the bursa of Fabricius associated with large, basophilic, intracytoplasmic inclusions, which ultrastructurally had an appearance typical of circovirus inclusions. This finding suggests that circoviruses may be more widespread in avian species than previously recognized and may be responsible for diseases associated with immunosuppression in free-living birds

    Recycling for a cleaner signal

    No full text

    Transforming musical performance: activating the audience as digital collaborators

    Get PDF
    Digital technologies have transformed the performance practice, recording and distribution technologies, economy and sonic landscape of music in a process of change that began in the early 1980s. Recent technological developments have opened up the possibility of embodied interaction between audiences and performers, reframing music performance as a collaborative improvisatory space that affords Interactive Musical Participation. The research in this practice-based thesis looks at the relationship and experience of audience members and musicians exploring Interactive Musical Participation within the wide stylistic framework of contemporary jazz. It also studies the potential for the creation of compositional, technological and performance protocols to enable successful Interactive Musical Participation. This has been achieved through a process of mapping the methodology behind the composition, technical infrastructure, performances and post-performance analysis of a series of musical artefacts. Cook (2001 and 2009) suggests that researchers in this field should “Make a piece, not an instrument or controller” and this dictum has influenced the development of the technical infrastructure for this research. Easily accessible and low-cost digital audio workstations Ableton Live (2017) and Logic Pro X (Apple, 2019) as well as the digital protocols Open Sound Control (OSC) (Opensoundcontrol.org) have been utilised to deliver the programming and networking requirements. A major innovation stemming from this project has been the development of the Deeper Love Soundpad App, a sample playback app for Apple smartphones and iPads, in collaboration with Dr. Rob Toulson. The theoretical background to this research has been informed by actornetwork theory, the sociological approach developed by Bruno Latour (2005), Michel Callon (1986) and John Law (1992). Actor-network theory (ANT) provides a framework for understanding the mechanics of power and organisation within heterogeneous non-hierarchical networks. Mapping and analysing the ANT networks and connections created by the research performances has provided valuable data in the Interactive Musical Participatio
    corecore