67 research outputs found

    Genome-Wide Profiling of H3K56 Acetylation and Transcription Factor Binding Sites in Human Adipocytes

    Get PDF
    The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte transcriptional regulation.Singapore. Agency for Science, Technology and Research (National Science Scholarship )Massachusetts Institute of Technology (Eugene Bell Career Development Chair)National Science Foundation (U.S.) (Award No. DBI-0821391)Pfizer Inc

    A Bayesian Partition Method for Detecting Pleiotropic and Epistatic eQTL Modules

    Get PDF
    Studies of the relationship between DNA variation and gene expression variation, often referred to as “expression quantitative trait loci (eQTL) mapping”, have been conducted in many species and resulted in many significant findings. Because of the large number of genes and genetic markers in such analyses, it is extremely challenging to discover how a small number of eQTLs interact with each other to affect mRNA expression levels for a set of co-regulated genes. We present a Bayesian method to facilitate the task, in which co-expressed genes mapped to a common set of markers are treated as a module characterized by latent indicator variables. A Markov chain Monte Carlo algorithm is designed to search simultaneously for the module genes and their linked markers. We show by simulations that this method is more powerful for detecting true eQTLs and their target genes than traditional QTL mapping methods. We applied the procedure to a data set consisting of gene expression and genotypes for 112 segregants of S. cerevisiae. Our method identified modules containing genes mapped to previously reported eQTL hot spots, and dissected these large eQTL hot spots into several modules corresponding to possibly different biological functions or primary and secondary responses to regulatory perturbations. In addition, we identified nine modules associated with pairs of eQTLs, of which two have been previously reported. We demonstrated that one of the novel modules containing many daughter-cell expressed genes is regulated by AMN1 and BPH1. In conclusion, the Bayesian partition method which simultaneously considers all traits and all markers is more powerful for detecting both pleiotropic and epistatic effects based on both simulated and empirical data

    Natural Single-Nucleosome Epi-Polymorphisms in Yeast

    Get PDF
    Epigenomes commonly refer to the sequence of presence/absence of specific epigenetic marks along eukaryotic chromatin. Complete histone-borne epigenomes have now been described at single-nucleosome resolution from various organisms, tissues, developmental stages, or diseases, yet their intra-species natural variation has never been investigated. We describe here that the epigenomic sequence of histone H3 acetylation at Lysine 14 (H3K14ac) differs greatly between two unrelated strains of the yeast Saccharomyces cerevisiae. Using single-nucleosome chromatin immunoprecipitation and mapping, we interrogated 58,694 nucleosomes and found that 5,442 of them differed in their level of H3K14 acetylation, at a false discovery rate (FDR) of 0.0001. These Single Nucleosome Epi-Polymorphisms (SNEPs) were enriched at regulatory sites and conserved non-coding DNA sequences. Surprisingly, higher acetylation in one strain did not imply higher expression of the relevant gene. However, SNEPs were enriched in genes of high transcriptional variability and one SNEP was associated with the strength of gene activation upon stimulation. Our observations suggest a high level of inter-individual epigenomic variation in natural populations, with essential questions on the origin of this diversity and its relevance to gene x environment interactions

    The Yin and Yang of Yeast Transcription: Elements of a Global Feedback System between Metabolism and Chromatin

    Get PDF
    When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions

    Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling

    Get PDF
    Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets.National Science Foundation (U.S.) (DB1-0821391)National Institutes of Health (U.S.) (Grant U54-CA112967)National Institutes of Health (U.S.) (Grant R01-GM089903)National Institutes of Health (U.S.) (P30-ES002109

    Use of Biomarkers in the Evaluation and Treatment of Hypertensive Patients

    Get PDF
    The current definition of hypertension is based on blood pressure values, and blood pressure also drives treatment decisions, is the most important treatment monitoring tool and helps estimating risk of hypertension related organ damage. In an era of precision medicine additional biomarkers are needed in the diagnosis and management of patients with hypertension. In this review we outline the areas in which functional, imaging and circulating biomarkers could help in a more individualised definition of hypertension and associated risk. We will cover biomarkers for diagnosis; of pathophysiology and prediction of hypertension; response to treatment, organ damage; and to monitor treatment. A clear focus is on the vasculature, the heart and the kidneys, whereas we see a need to further develop biomarkers of cerebral function in order to diagnose cognition deficits and monitor changes in cognition in the future to support addressing the growing burden of hypertension associated vascular dementia

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease ris
    corecore