5,361 research outputs found

    Reversible change in electrical and optical properties in epitaxially grown Al-doped ZnO thin films

    Get PDF
    Aluminum-doped ZnO (AZO) films were epitaxially grown on sapphire (0001) substrates using pulsed laser deposition. As-deposited AZO films had a low resistivity of 8.01× 10-4 Ω cm. However, after annealing at 450 °C in air, the electrical resistivity of the AZO films increased to 1.97× 10-1 Ω cm because of a decrease in the carrier concentration. Subsequent annealing of the air-annealed AZO films in H2 recovered the electrical conductivity of the AZO films. In addition, the conductivity change was reversible upon repeated air and H2 annealing. A photoluminescence study showed that oxygen interstitial (Oiâ€Č) is a critical material parameter allowing for the reversible control of the electrical conducting properties of AZO films. © 2008 American Institute of Physics

    Network-Level Structural Abnormalities of Cerebral Cortex in Type 1 Diabetes Mellitus

    Get PDF
    Type 1 diabetes mellitus (T1DM) usually begins in childhood and adolescence and causes lifelong damage to several major organs including the brain. Despite increasing evidence of T1DM-induced structural deficits in cortical regions implicated in higher cognitive and emotional functions, little is known whether and how the structural connectivity between these regions is altered in the T1DM brain. Using inter-regional covariance of cortical thickness measurements from high-resolution T1-weighted magnetic resonance data, we examined the topological organizations of cortical structural networks in 81 T1DM patients and 38 healthy subjects. We found a relative absence of hierarchically high-level hubs in the prefrontal lobe of T1DM patients, which suggests ineffective top-down control of the prefrontal cortex in T1DM. Furthermore, inter-network connections between the strategic/executive control system and systems subserving other cortical functions including language and mnemonic/emotional processing were also less integrated in T1DM patients than in healthy individuals. The current results provide structural evidence for T1DM-related dysfunctional cortical organization, which specifically underlie the top-down cognitive control of language, memory, and emotion. © 2013 Lyoo et al

    Extension of non-minimal derivative coupling theory and Hawking radiation in black-hole spacetime

    Full text link
    We study the greybody factor and Hawking radiation with a non-minimal derivative coupling between the scalar field and the curvature in the background of the slowly rotating Kerr-Newman black hole. Our results show that both the absorption probability and luminosity of Hawking radiation of the scalar field increase with the coupling. Moreover, we also find that for the weak coupling η<ηc\eta<\eta_c, the absorption probability and luminosity of Hawking radiation decrease when the black hole's Hawking temperature decreases; while for stronger coupling η>ηc\eta>\eta_c, the absorption probability and luminosity of Hawking radiation increase on the contrary when the black hole's Hawking temperature decreases. This feature is similar to the Hawking radiation in a dd-dimensional static spherically-symmetric black hole surrounded by quintessence \cite{chensong}.Comment: 17 pages, 6 figures, 1 table, Title changed, Appendix changed, accepted by JHE

    Seed-layer mediated orientation evolution in dielectric Bi-Zn-Ti-Nb-O thin films

    Get PDF
    Highly (hhh) -oriented pyrochlore Bi-Zn-Ti-Nb-O (BZTN) thin films were fabricated via metal-organic decomposition using orientation template layers. The preferred orientation was ascribed to the interfacial layer, the lattice parameter of which is similar to BZTN. High-resolution transmission electron microscopy supported that the interfacial layer consists of Bi and Pt. The (hhh) -oriented thin films exhibited a highly insulating nature enabling feasible applications in electronic devices, particularly voltage tunable application. The BZTN thin films did not show any apparent dielectric anisotropy and the slightly enhanced dielectric properties were discussed in connection to the internal stress and the grain boundary effect. © 2007 American Institute of Physics

    Structure and dielectric properties of cubic Bi<inf>2</inf>(Zn <inf>1/3</inf>Ta<inf>2/3</inf>)<inf>2</inf> O<inf>7</inf> thin films

    Get PDF
    Pyrochlore Bi2(Zn1/3Ta2/3)2 O7 (BZT) films were prepared by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates. In contrast to bulk monoclinic BZT ceramics, the BZT films have a cubic structure mediated by an interfacial layer. The dielectric properties of the cubic BZT films [Δ∌177, temperature coefficient of capacitance (TCC) ∌-170 ppm/°C] are much different from those of monoclinic BZT ceramics (Δ∌61, TCC ∌+60 ppm/°C). Increasing the thickness of the BZT films returns the crystal structure to the monoclinic phase, which allows the dielectric properties of the BZT films to be tuned without changing their chemical composition. © 2009 American Institute of Physics

    Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test

    Full text link
    [EN] Phytophthora species are the main agents associated with oak (Quercus spp.) decline, together with the changing environmental conditions and the intensive land use. The aim of this study was to evaluate the susceptibility of Quercus ilex to the inoculation with eight Phytophthora species. Seven to eight month old Q. ilex seedlings grown from acorns, obtained from two Spanish origins, were inoculated with P. cinnamomi, P. cryptogea, P. gonapodyides, P. megasperma, P. nicotianae, P. plurivora, P. psychrophila and P. quercina. All Phytophthora inoculated seedlings showed decline and symptoms including small dark necrotic root lesions, root cankers, and loss of fine roots and tap root. The most aggressive species were P. cinnamomi, P. cryptogea, P. gonapodyides, P. plurivora and P. psychrophila followed by P. megasperma., while Phytophthora quercina and P. nicotianae were the less aggressive species. Results obtained confirm that these Phytophthora species could constituted a threat to Q. ilex ecosystems and the implications are further discussed.The authors are grateful to A. Solla and his team from the Centro Universitario de Plasencia-Universidad de Extremadura (Spain) for helping in the acorns collection and to the CIEF (Centro para la InvestigaciĂłn y ExperimentaciĂłn Forestal, Generalitat Valenciana, Valencia, Spain) for providing the acorns. This research was supported by funding from the project AGL2011- 30438-C02-01 (Ministerio de EconomĂ­a y Competitividad, Spain).Mora-Sala, B.; Abad Campos, P.; Berbegal Martinez, M. (2018). Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-018-01650-6SÁlvarez, L. A., PĂ©rez-Sierra, A., Armengol, J., & GarcĂ­a-JimĂ©nez, J. (2007). Characterization of Phytophthora nicotianae isolates causing collar and root rot of lavender and rosemary in Spain. Journal of Plant Pathology, 89, 261–264.Balci, Y., & Halmschlager, E. (2003a). Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. Forest Pathology, 33, 157–174.Balci, Y., & Halmschlager, E. (2003b). Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathology, 52, 694–702.Brasier, C. M. (1992a). Oak tree mortality in Iberia. Nature, 360, 539.Brasier, C. M. ((1992b)). Phytophthora cinnamomi as a contributory factor on European oak declines. In N. by Luisi, P. Lerario, & A. B. Vannini (Eds.), Recent Advances in Studies on Oak Decline. Proc. Int. Congress, Brindisi, Italy, September 13-18, 1992 (pp. 49–58). Italy: UniversitĂ  degli Studi.Brasier, C. M. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annales des Sciences Forestieres, 53, 347–358.Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57, 792–808.Brasier, C. M., Hamm, P. B., & Hansen, E. M. (1993a). Cultural characters, protein patterns and unusual mating behaviour of P. gonapodyides isolates from Britain and North America. Mycological Research, 97, 1287–1298.Brasier, C. M., Robredo, F., & Ferraz, J. F. P. (1993b). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140–145.Camilo-Alves, C. S. P., Clara, M. I. E., & Ribeiro, N. M. C. A. (2013). Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research, 132, 411–432.CatalĂ , S., Berbegal, M., PĂ©rez-Sierra, A., & Abad-Campos, P. (2017). Metabarcoding and development of new real-time specific assays reveal Phytophthora species diversity in holm oak forests in eastern Spain. Plant Pathology, 66, 115–123.Collett, D. (2003). Modelling survival data in medical research (2nd ed.). Boca Raton: Chapman & Hall/CRC, 410 pp.Corcobado, T., Cubera, E., PĂ©rez-Sierra, A., Jung, T., & Solla, A. (2010). First report of Phytophthora gonapodyides involved in the decline of Quercus ilex in xeric conditions in Spain. New Disease Reports, 22, 33.Corcobado, T., Cubera, E., Moreno, G., & Solla, A. (2013). Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agricultural and Forest Meteorology, 169, 92–99.Corcobado, T., Vivas, M., Moreno, G., & Solla, A. (2014). Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. Forest Ecology and Management, 324, 72–80.Corcobado, T., Miranda-Torres, J. J., MartĂ­n-GarcĂ­a, J., Jung, T., & Solla, A. (2017). Early survival of Quercus ilex subspecies from different populations after infections and co-infections by multiple Phytophthora species. Plant Pathology, 66, 792–804.Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul, Minnesota,USA: APS Press, American Phytopathological. Society 562pp.Gallego, F. J., Perez de Algaba, A., & Fernandez-Escobar, R. (1999). Etiology of oak decline in Spain. European Journal of Forest Pathology, 29, 17–27.Hansen, E., & Delatour, C. (1999). Phytophthora species in oak forests of north-east France. Annals of Forest Science, 56, 539–547.Hardham, A. R., & Blackman, L. M. (2010). Molecular cytology of Phytophthora plant interactions. Australasian Plant Pathology, 39, 29.HernĂĄndez-Lambraño, R. E., GonzĂĄlez-Moreno, P., & SĂĄnchez-Agudo, J. Á. (2018). Environmental factors associated with the spatial distribution of invasive plant pathogens in the Iberian Peninsula: The case of Phytophthora cinnamomi Rands. Forest Ecology and Management, 419, 101–109.Jankowiak, R., Stępniewska, H., BilaƄski, P., & Kolaƙík, M. (2014). Occurrence of Phytophthora plurivora and other Phytophthora species in oak forests of southern Poland and their association with site conditions and the health status of trees. Folia Microbiologica, 59, 531–542.Jeffers, S. N., & Aldwinckle, H. S. (1987). Enhancing detection of Phytophthora cactorum in naturally infested soil. Phytopathology, 77, 1475–1482.JimĂ©nez, A. J., SĂĄnchez, E. J., Romero, M. A., Belbahri, L., Trapero, A., Lefort, F., & SĂĄnchez, M. E. (2008). Pathogenicity of Pythium spiculum and P. sterilum on feeder roots of Quercus rotundifolia. Plant Pathology, 57, 369.Jönsson, U. (2006). A conceptual model for the development of Phytophthora disease in Quercus robur. New Phytologist, 171, 55–68.Jönsson, U., Jung, T., Rosengren, U., Nihlgard, B., & Sonesson, K. (2003). Pathogenicity of Swedish isolates of Phytophthora quercina to Quercus robur in two different soils. New Phytologist, 158, 355–364.Jung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia, 22, 95–110.Jung, T., Blaschke, H., & Neumann, P. (1996). Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. European Journal of Forest Pathology, 26, 253–272.Jung, T., Cooke, D. E. L., Blaschke, H., Duncan, J. M., & Oßwald, W. (1999). Phytophthora quercina sp. nov., causing root rot of European oaks. Mycological Research, 103, 785–798.Jung, T., Blaschke, H., & Oßwald, W. (2000). Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology, 49, 706–718.Jung, T., Hansen, E. M., Winton, L., Oßwald, W., & Delatour, C. (2002). Three new species of Phytophthora from European oak forests. Mycological Research, 106, 397–411.Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A. G., AguĂ­n Casal, O., Bakonyi, J., Cacciola, S. O., Cech, T., Chavarriaga, D., Corcobado, T., Cravador, A., Decourcelle, T., Denton, G., Diamandis, S., Dogmus-LehtijĂ€rvi, H. T., Franceschini, A., Ginetti, B., Glavendekic, M., Hantula, J., Hartmann, G., Herrero, M., Ivic, D., Horta Jung, M., Lilja, A., Keca, N., Kramarets, V., Lyubenova, A., Machado, H., Magnano di San Lio, G., Mansilla VĂĄzquez, P. J., Marçais, B., Matsiakh, I., Milenkovic, I., Moricca, S., Nagy, Z. Á., Nechwatal, J., Olsson, C., Oszako, T., Pane, A., Paplomatas, E. J., Pintos Varela, C., Prospero, S., Rial MartĂ­nez, C., Rigling, D., Robin, C., Rytkönen, A., SĂĄnchez, M. E., Scanu, B., Schlenzig, A., Schumacher, J., Slavov, S., Solla, A., Sousa, E., Stenlid, J., TalgĂž, V., Tomic, Z., Tsopelas, P., Vannini, A., Vettraino, A. M., Wenneker, M., Woodward, S., & PerĂ©z-Sierra, A. (2016). Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46, 134–163.Kroon, L. P., Brouwer, H., de Cock, A. W., & Govers, F. (2012). The genus Phytophthora anno 2012. Phytopathology, 102, 348–364.Linaldeddu, B. T., Scanu, B., Maddau, L., & Franceschini, A. (2014). Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathology, 44, 191–200.Luque, J., ParladĂ©, J., & Pera, J. (2000). Pathogenicity of fungi isolated from Quercus suber in Catalonia (NE Spain). Forest Pathology, 30, 247–263.Luque, J., ParladĂ©, J., & Pera, J. (2002). Seasonal changes in susceptibility of Quercus suber to Botryosphaeria stevensii and Phytophthora cinnamomi. Plant Pathology, 51, 338–345.MAGRAMA. (2014). DiagnĂłstico del Sector Forestal Español. AnĂĄlisis y Prospectiva - Serie Agrinfo/Medioambiente n° 8. Ed. Ministerio de Agricultura, AlimentaciĂłn y Medio Ambiente. In NIPO: 280-14-081-9.MartĂ­n-GarcĂ­a, J., Solla, A., Corcobado, T., Siasou, E., & Woodward, S. (2015). Influence of temperature on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. Forest Pathology, 45, 215–223.Maurel, M., Robin, C., Capron, G., & Desprez-Loustau, M. L. (2001). Effects of root damage associated with Phytophthora cinnamomi on water elations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. Forest Pathology, 31, 353–369.McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.Moralejo, E., PĂ©rez-Sierra, A., Álvarez, L. A., Belbahri, L., Lefort, F., & Descals, E. (2009). Multiple alien Phytophthora taxa discovered on diseased ornamental plants in Spain. Plant Pathology, 58, 100–110.Mora-Sala, B., Berbegal, M., & Abad-Campos, P. (2018). The use of qPCR reveals a high frequency of Phytophthora quercina in two Spanish holm oak areas. Forests, 9(11):697. https://doi.org/10.3390/f9110697 .Moreira, A. C., & Martins, J. M. S. (2005). Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. Forest Pathology, 35, 145–162.MrĂĄzkovĂĄ, M., ČernĂœ, K., Tomosovsky, M., StrnadovĂĄ, V., GregorovĂĄ, B., Holub, V., Panek, M., HavrdovĂĄ, L., & HejnĂĄ, M. (2013). Occurrence of Phytophthora multivora and Phytophthora plurivora in the Czech Republic. Plant Protection Science, 49, 155–164.Navarro, R. M., Gallo, L., SĂĄnchez, M. E., FernĂĄndez, P., & Trapero, A. (2004). Efecto de distintas fertilizaciones de fĂłsforo en la resistencia de brinzales de encina y alcornoque a Phytophthora cinnamomi Rands. InvestigaciĂłn Agraria. Sistemas y Recursos Forestales, 13, 550–558.PanabiĂšres, F., Ali, G., Allagui, M., Dalio, R., Gudmestad, N., Kuhn, M., Guha Roy, S., Schena, L., & Zampounis, A. (2016). Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen. Phytopathologia Mediterranea, 55, 20–40.PĂ©rez-Sierra, A., & Jung, T. (2013). Phytophthora in woody ornamental nurseries. In: Phytophthora: A global perspective (pp. 166-177). Ed. by Lamour, K. Wallingford: CABI.PĂ©rez-Sierra, A., Mora-Sala, B., LeĂłn, M., GarcĂ­a-JimĂ©nez, J., & Abad-Campos, P. (2012). Enfermedades causadas por Phytophthora en viveros de plantas ornamentales. BoletĂ­n de Sanidad Vegetal-Plagas, 38, 143–156.PĂ©rez-Sierra, A., LĂłpez-GarcĂ­a, C., LeĂłn, M., GarcĂ­a-JimĂ©nez, J., Abad-Campos, P., & Jung, T. (2013). Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. Forest Pathology, 43, 331–339.Redondo, M. A., PĂ©rez-Sierra, A., & Abad-Campos, P. (2015). Histology of Quercus ilex roots during infection by Phytophthora cinnamomi. Trees - Structure and Function, 29, 1943–5197.RĂ­os, P., ObregĂłn, S., de Haro, A., FernĂĄndez-Rebollo, P., Serrano, M. S., & SĂĄnchez, M. E. (2016). Effect of Brassica Biofumigant Amendments on Different Stages of the Life Cycle of Phytophthora cinnamomi. Journal of Phytopathology, 164, 582–594.Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., & Koike, S. T. (2002). Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Disease, 86, 205–214.Robin, C., Desprez-Loustau, M. L., Capron, G., & Delatour, C. (1998). First record of Phytophthora cinnamomi on cork and holm oaks in France and evidence of pathogenicity. Annales Des Sciences Forestieres, 55, 869–883.Robin, C., Capron, G., & Desprez-Loustau, M. L. (2001). Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathology, 50, 708–716.RodrĂ­guez-Molina, M. C., Torres-Vila, L. M., Blanco-Santos, A., NĂșñez, E. J. P., & Torres-Álvarez, E. (2002). Viability of holm and cork oak seedlings from acorns sown in soils naturally infected with Phytophthora cinnamomi. Forest Pathology, 32, 365–372.Romero, M. A., SĂĄnchez, J. E., JimĂ©nez, J. J., Belbahri, L., Trapero, A., Lefort, F., & SĂĄnchez, M. E. (2007). New Pythium taxa causing root rot in Mediterranean Quercus species in southwest Spain and Portugal. Journal of Phytopathology, 115, 289–295.SĂĄnchez de Lorenzo-CĂĄceres J. M. (2001). GuĂ­a de las plantas ornamentales. S.A. Mundi-Prensa Libros. ISBN 9788471149374. 688 pp.SĂĄnchez, M. E., Caetano, P., Ferraz, J., & Trapero, A. (2002). Phytophtora disease of Quercus ilex in south-western Spain. Forest Pathology, 32, 5–18.SĂĄnchez, M. E., SĂĄnchez, J. E., Navarro, R. M., FernĂĄndez, P., & Trapero, A. (2003). Incidencia de la podredumbre radical causada por Phytophthora cinnamomi en masas de Quercus en AndalucĂ­a. BoletĂ­n de Sanidad Vegetal-Plagas, 29, 87–108.SĂĄnchez, M. E., Andicoberry, S., & Trapero, A. (2005). Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. Forest Pathology, 35, 115–125.SĂĄnchez, M. E., Caetano, P., Romero, M. A., Navarro, R. M., & Trapero, A. (2006). Phytophthora root rot as the main factor of oak decline in southern Spain. In: Progress in Research on Phytophthora Diseases of Forest Trees. Proceedings of the Third International IUFRO Working Party S07.02.09. Meeting at Freising. Germany 11-18 September 2004. Brasier C. M., Jung T., Oßwald W. (Eds). Forest Research. Farnham, UK. pp. 149-154.Scanu, B., Linaldeddu, B. T., Deidda, A., & Jung, T. (2015). Diversity of Phytophthora species from declining Mediterranean maquis vegetation, including two new species, Phytophthora crassamura and P. ornamentata sp. nov. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0143234 .Schmitthenner, A. F., & Canaday, C. H. (1983). Role of chemical factors in the development of Phytophthora diseases. In: Phytophthora. Its biology, taxonomy, ecology, and pathology (pp.189-196). Ed. by Erwin D. C., Bartnicki-Garcia S., Tsao P. H. St. Paul, : The American Phytopathological Society.Scibetta, S., Schena, L., Chimento, A., Cacciola, S. A., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88, 356–368.Sena, K., Crocker, E., Vincelli, P., & Barton, C. (2018). Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. Forest Ecology and Management, 409, 799–807.Thines, M. (2013). Taxonomy and phylogeny of Phytophthora and related oomycetes In: Phytophthora: A global perspective (pp. 11-18). Ed. by Lamour, K. Wallingford: CABI.Tsao, P. H. (1990). Why many Phytophthora root rots and crown rots of tree and horticultural crops remain undetected. EPPO Bulletin, 20, 11–17.Tuset, J. J., Hinarejos, C., Mira, J. L., & Cobos, M. (1996). ImplicaciĂłn de Phytophthora cinnamomi Rands en la enfermedad de la seca de encinas y alcornoques. BoletĂ­n de Sanidad Vegetal-Plagas, 22, 491–499.Vettraino, A. M., Barzanti, G. P., Bianco, M. C., Ragazzi, A., Capretti, P., Paoletti, E., & Vannini, A. (2002). Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology, 32, 19–28.Xia, K., Hill, L. M., Li, D. Z., & Walters, C. (2014). Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Annals of Botany, 114, 1747–1759

    Characterization of Fine Particulate Matter and Associations between Particulate Chemical Constituents and Mortality in Seoul, Korea

    Get PDF
    Background: Numerous studies have linked fine particles [≀ 2.5 ”m in aerodynamic diameter (PM2.5)] and health. Most studies focused on the total mass of the particles, although the chemical composition of the particles varies substantially. Which chemical components of fine particles that are the most harmful is not well understood, and research on the chemical composition of PM2.5 and the components that are the most harmful is particularly limited in Asia

    Self-Affirmation Improves Problem-Solving under Stress

    Get PDF
    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. © 2013 Creswell et al
    • 

    corecore