26 research outputs found

    Psychoactive substances bill and act of New Zealand: A chance to engage undergraduate scientists with society using a transfer learning paradigm

    No full text
    Our aim was to develop a teaching paradigm that connected undergraduate's neuropharmacological/toxicological knowledge to that of government policy. One goal of undergraduate education should be to help develop scientists that can use their scientific knowledge to critique government policy. There is little research, however, on whether democratization of science occurs: nor how to achieve this. Our work focused on a semi-structured workshop designed around the Psychoactive Substances Bill (PSB). Third year science students were given a questionnaire that was designed to address whether participating in the workshop enhanced their understanding of the PSB and its relationship to their established knowledge (i.e., transfer learning). Furthermore, whether they felt that they had enough expertise to consider making a submission (i.e., societal engagement). Results showed that the students appreciated the opportunity to explore potential application of their knowledge and delve into a socio-scientific issue. However, our findings suggested they felt uncomfortable discussing their ideas outside the classroom: nor, did they identify themselves as having sufficient knowledge to contribute to a submission. In conclusion, this study highlights two points. First, that discussion based transfer learning can be used in the tertiary sector and students value the opportunity to apply their knowledge to socio-scientific issue. Second, if social participation and democratization of science is a goal, then more emphasis should be placed on how students can realistically and confidently apply their learning to change social policy. In order to achieve this, education programs need to focus on legitimate real-life processes such as the PSB for engagemen

    Psychoactive substances bill and act of New Zealand: A chance to engage undergraduate scientists with society using a transfer learning paradigm

    No full text
    Our aim was to develop a teaching paradigm that connected undergraduate's neuropharmacological/toxicological knowledge to that of government policy. One goal of undergraduate education should be to help develop scientists that can use their scientific knowledge to critique government policy. There is little research, however, on whether democratization of science occurs: nor how to achieve this. Our work focused on a semi-structured workshop designed around the Psychoactive Substances Bill (PSB). Third year science students were given a questionnaire that was designed to address whether participating in the workshop enhanced their understanding of the PSB and its relationship to their established knowledge (i.e., transfer learning). Furthermore, whether they felt that they had enough expertise to consider making a submission (i.e., societal engagement). Results showed that the students appreciated the opportunity to explore potential application of their knowledge and delve into a socio-scientific issue. However, our findings suggested they felt uncomfortable discussing their ideas outside the classroom: nor, did they identify themselves as having sufficient knowledge to contribute to a submission. In conclusion, this study highlights two points. First, that discussion based transfer learning can be used in the tertiary sector and students value the opportunity to apply their knowledge to socio-scientific issue. Second, if social participation and democratization of science is a goal, then more emphasis should be placed on how students can realistically and confidently apply their learning to change social policy. In order to achieve this, education programs need to focus on legitimate real-life processes such as the PSB for engagemen

    Interaction between the hypothalamic-pituitary-adrenal axis and behavioural compensation following unilateral vestibular deafferentation.

    No full text
    Vestibular compensation is defined as the process of behavioural recovery that occurs following the loss of sensory input from one or both vestibular labyrinths. The visual and postural instability resulting from the vestibular damage must alter the homeostasis of the subject; however, very little research has been conducted that investigates the interaction between vestibular compensation and the adaptive stress response of the body, i.e. the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this review is to describe and evaluate the experimental evidence indicating a link between vestibular compensation and the body's response to stress, via the HPA axi

    Interaction between the hypothalamic-pituitary-adrenal axis and behavioural compensation following unilateral vestibular deafferentation.

    No full text
    Vestibular compensation is defined as the process of behavioural recovery that occurs following the loss of sensory input from one or both vestibular labyrinths. The visual and postural instability resulting from the vestibular damage must alter the homeostasis of the subject; however, very little research has been conducted that investigates the interaction between vestibular compensation and the adaptive stress response of the body, i.e. the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this review is to describe and evaluate the experimental evidence indicating a link between vestibular compensation and the body's response to stress, via the HPA axi

    Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa

    No full text
    The extent of clonality within populations strongly influences their spatial genetic structure (SGS), yet this is hardly ever thoroughly analysed. We employed spatial autocorrelation analysis to study effects of sexual and clonal reproduction on dispersal of the dioecious seagrass Cymodocea nodosa. Analyses were performed both at genet level (i.e. excluding clonal repeats) and at ramet level. Clonal structure was characterized by the clonal subrange, a spatial measure of the linear limits where clonality still affects SGS. We show that the clonal subrange is equivalent to the distance where the probability of clonal identity approaches zero. This combined approach was applied to two meadows with different levels of disturbance, Cadiz (stable) and Alfacs (disturbed). Genotypic richness, the proportion of the sample representing distinct genotypes, was moderate (0.38 Cadiz, 0.46 Alfacs) mostly due to dominance of a few clones. Expected heterozygosities were comparable to those found in other clonal plants. SGS analyses at the genet level revealed extremely restricted gene dispersal in Cadiz (Sp = 0.052, a statistic reflecting the decrease of pairwise kinship with distance), the strongest SGS found for seagrass species, comparable only to values for selfing herbaceous land plants. At Cadiz the clonal subrange extended across shorter distances (20–25 m) than in Alfacs (30–35 m). Comparisons of sexual and vegetative components of gene dispersal suggest that, as a dispersal vector within meadows, clonal spread is at least as important as sexual reproduction. The restricted dispersal and SGS pattern in both meadows indicates that the species follows a repeated seedling recruitment strategy
    corecore