112 research outputs found

    Phenotypic Characterization of Autoreactive B Cells—Checkpoints of B Cell Tolerance in Patients with Systemic Lupus Erythematosus

    Get PDF
    DNA-reactive B cells play a central role in systemic lupus erythematosus (SLE); DNA antibodies precede clinical disease and in established disease correlate with renal inflammation and contribute to dendritic cell activation and high levels of type 1 interferon. A number of central and peripheral B cell tolerance mechanisms designed to control the survival, differentiation and activation of autoreactive B cells are thought to be disturbed in patients with SLE. The characterization of DNA-reactive B cells has, however, been limited by their low frequency in peripheral blood. Using a tetrameric configuration of a peptide mimetope of DNA bound by pathogenic anti-DNA antibodies, we can identify B cells producing potentially pathogenic DNA-reactive antibodies. We, therefore, characterized the maturation and differentiation states of peptide, (ds) double stranded DNA cross-reactive B cells in the peripheral blood of lupus patients and correlated these with clinical disease activity. Flow cytometric analysis demonstrated a significantly higher frequency of tetramer-binding B cells in SLE patients compared to healthy controls. We demonstrated the existence of a novel tolerance checkpoint at the transition of antigen-naĂŻve to antigen-experienced. We further demonstrate that patients with moderately active disease have more autoreactive B cells in both the antigen-naĂŻve and antigen-experienced compartments consistent with greater impairment in B cell tolerance in both early and late checkpoints in these patients than in patients with quiescent disease. This methodology enables us to gain insight into the development and fate of DNA-reactive B cells in individual patients with SLE and paves the way ultimately to permit better and more customized therapies

    Association between hMLH1 hypermethylation and JC virus (JCV) infection in human colorectal cancer (CRC)

    Get PDF
    Incorporation of viral DNA may interfere with the normal sequence of human DNA bases on the genetic level or cause secondary epigenetic changes such as gene promoter methylation or histone acetylation. Colorectal cancer (CRC) is the second leading cause of cancer mortality in the USA. Chromosomal instability (CIN) was established as the key mechanism in cancer development. Later, it was found that CRC results not only from the progressive accumulation of genetic alterations but also from epigenetic changes. JC virus (JCV) is a candidate etiologic factor in sporadic CRC. It may act by stabilizing ÎČ-catenin, facilitating its entrance to the cell nucleus, initialing proliferation and cancer development. Diploid CRC cell lines transfected with JCV-containing plasmids developed CIN. This result provides direct experimental evidence for the ability of JCV T-Ag to induce CIN in the genome of colonic epithelial cells. The association of CRC hMLH1 methylation and tumor positivity for JCV was recently documented. JC virus T-Ag DNA sequences were found in 77% of CRCs and are associated with promoter methylation of multiple genes. hMLH1 was methylated in 25 out of 80 CRC patients positive for T-Ag (31%) in comparison with only one out of 11 T-Ag negative cases (9%). Thus, JCV can mediate both CIN and aberrant methylation in CRC. Like other viruses, chronic infection with JCV may induce CRC by different mechanisms which should be further investigated. Thus, gene promoter methylation induced by JCV may be an important process in CRC and the polyp-carcinoma sequence

    Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures

    Get PDF
    Transparent electrodes with superior flexibility and stretchability as well as good electrical and optical properties are required for applications in wearable electronics with comfort designs and high performances. Here, we present hybrid nanostructures as stretchable and transparent electrodes based on graphene and networks of metal nanowires, and investigate their optical, electrical, and mechanical properties. High electrical and optical characteristics, superb bendability (folded in half), excellent stretchability (10,000 times in stretching cycles with 100% in tensile strain toward a uniaxial direction and 30% in tensile strain toward a multi-axial direction), strong robustness against electrical breakdown and thermal oxidation were obtained through comprehensive study. We believe that these results suggest a substantial promise application in future electronicsopen1

    Analgesic management of an eight-year-old Springer Spaniel after amputation of a thoracic limb

    Get PDF
    Analgesic agents were administered perioperatively to an eight-year-old Springer Spaniel undergoing amputation of its right thoracic limb. The amputation was carried out due to a painful, infiltrative and poorly differentiated sarcoma involving the nerves of the brachial plexus. A combination of pre-emptive and multimodal perioperative analgesic strategies was used; including intravenous (IV) infusions of fentanyl, morphine, lidocaine and ketamine

    Peptidoglycan-Modifying Enzyme Pgp1 Is Required for Helical Cell Shape and Pathogenicity Traits in Campylobacter jejuni

    Get PDF
    The impact of bacterial morphology on virulence and transmission attributes of pathogens is poorly understood. The prevalent enteric pathogen Campylobacter jejuni displays a helical shape postulated as important for colonization and host interactions. However, this had not previously been demonstrated experimentally. C. jejuni is thus a good organism for exploring the role of factors modulating helical morphology on pathogenesis. We identified an uncharacterized gene, designated pgp1 (peptidoglycan peptidase 1), in a calcofluor white-based screen to explore cell envelope properties important for C. jejuni virulence and stress survival. Bioinformatics showed that Pgp1 is conserved primarily in curved and helical bacteria. Deletion of pgp1 resulted in a striking, rod-shaped morphology, making pgp1 the first C. jejuni gene shown to be involved in maintenance of C. jejuni cell shape. Pgp1 contributes to key pathogenic and cell envelope phenotypes. In comparison to wild type, the rod-shaped pgp1 mutant was deficient in chick colonization by over three orders of magnitude and elicited enhanced secretion of the chemokine IL-8 in epithelial cell infections. Both the pgp1 mutant and a pgp1 overexpressing strain – which similarly produced straight or kinked cells – exhibited biofilm and motility defects. Detailed peptidoglycan analyses via HPLC and mass spectrometry, as well as Pgp1 enzyme assays, confirmed Pgp1 as a novel peptidoglycan DL-carboxypeptidase cleaving monomeric tripeptides to dipeptides. Peptidoglycan from the pgp1 mutant activated the host cell receptor Nod1 to a greater extent than did that of wild type. This work provides the first link between a C. jejuni gene and morphology, peptidoglycan biosynthesis, and key host- and transmission-related characteristics

    The Flagellum of Pseudomonas aeruginosa Is Required for Resistance to Clearance by Surfactant Protein A

    Get PDF
    Surfactant protein A (SP-A) is an important lung innate immune protein that kills microbial pathogens by opsonization and membrane permeabilization. We investigated the basis of SP-A-mediated pulmonary clearance of Pseudomonas aeruginosa using genetically-engineered SP-A mice and a library of signature-tagged P. aeruginosa mutants. A mutant with an insertion into flgE, the gene that encodes flagellar hook protein, was preferentially cleared by the SP-A(+/+) mice, but survived in the SP-A(-/-) mice. Opsonization by SP-A did not play a role in flgE clearance. However, exposure to SP-A directly permeabilized and killed the flgE mutant, but not the wild-type parental strain. P. aeruginosa strains with mutation in other flagellar genes, as well as mucoid, nonmotile isolates from cystic fibrosis patients, were also permeabilized by SP-A. Provision of the wild-type fliC gene restored the resistance to SP-A-mediated membrane permeabilization in the fliC-deficient bacteria. In addition, non-mucoid, motile revertants of CF isolates reacquired resistance to SP-A-mediated membrane permeability. Resistance to SP-A was dependent on the presence of an intact flagellar structure, and independent of flagellar-dependent motility. We provide evidence that flagellar-deficient mutants harbor inadequate amounts of LPS required to resist membrane permeabilization by SP-A and cellular lysis by detergent targeting bacterial outer membranes. Thus, the flagellum of P. aeruginosa plays an indirect but important role resisting SP-A-mediated clearance and membrane permeabilization

    Small Molecule Control of Virulence Gene Expression in Francisella tularensis

    Get PDF
    In Francisella tularensis, the SspA protein family members MglA and SspA form a complex that associates with RNA polymerase (RNAP) to positively control the expression of virulence genes critical for the intramacrophage growth and survival of the organism. Although the association of the MglA-SspA complex with RNAP is evidently central to its role in controlling gene expression, the molecular details of how MglA and SspA exert their effects are not known. Here we show that in the live vaccine strain of F. tularensis (LVS), the MglA-SspA complex works in concert with a putative DNA-binding protein we have called PigR, together with the alarmone guanosine tetraphosphate (ppGpp), to regulate the expression of target genes. In particular, we present evidence that MglA, SspA, PigR and ppGpp regulate expression of the same set of genes, and show that mglA, sspA, pigR and ppGpp null mutants exhibit similar intramacrophage growth defects and are strongly attenuated for virulence in mice. We show further that PigR interacts directly with the MglA-SspA complex, suggesting that the central role of the MglA and SspA proteins in the control of virulence gene expression is to serve as a target for a transcription activator. Finally, we present evidence that ppGpp exerts its effects by promoting the interaction between PigR and the RNAP-associated MglA-SspA complex. Through its responsiveness to ppGpp, the contact between PigR and the MglA-SspA complex allows the integration of nutritional cues into the regulatory network governing virulence gene expression

    Azithromycin-chloroquine and the intermittent preventive treatment of malaria in pregnancy

    Get PDF
    In the high malaria-transmission settings of sub-Saharan Africa, malaria in pregnancy is an important cause of maternal, perinatal and neonatal morbidity. Intermittent preventive treatment of malaria in pregnancy (IPTp) with sulphadoxine-pyrimethamine (SP) reduces the incidence of low birth-weight, pre-term delivery, intrauterine growth-retardation and maternal anaemia. However, the public health benefits of IPTp are declining due to SP resistance. The combination of azithromycin and chloroquine is a potential alternative to SP for IPTp. This review summarizes key in vitro and in vivo evidence of azithromycin and chloroquine activity against Plasmodium falciparum and Plasmodium vivax, as well as the anticipated secondary benefits that may result from their combined use in IPTp, including the cure and prevention of many sexually transmitted diseases. Drug costs and the necessity for external financing are discussed along with a range of issues related to drug resistance and surveillance. Several scientific and programmatic questions of interest to policymakers and programme managers are also presented that would need to be addressed before azithromycin-chloroquine could be adopted for use in IPTp

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore