77 research outputs found

    The holistic phase model of early adult crisis

    Get PDF
    The objective of the current study was to explore the structural, temporal and experiential manifestations of crisis episodes in early adulthood, using a holistic-systemic theoretical framework. Based on an analysis of 50 interviews with individuals about a crisis episode between the ages of 25 and 35, a holistic model was developed. The model comprises four phases: (1) Locked-in, (2) Separation/Time-out, (3) Exploration and (4) Rebuilding, which in turn have characteristic features at four levels—person-in-environment, identity, motivation and affect-cognition. A crisis starts out with a commitment at work or home that has been made but is no longer desired, and this is followed by an emotionally volatile period of change as that commitment is terminated. The positive trajectory of crisis involves movement through an exploratory period towards active rebuilding of a new commitment, but ‘fast-forward’ and ‘relapse’ loops can interrupt Phases 3 and 4 and make a positive resolution of the episode less likely. The model shows conceptual links with life stage theories of emerging adulthood and early adulthood, and it extends current understandings of the transitional developmental challenges that young adults encounter

    Stochastic Resonance Modulates Neural Synchronization within and between Cortical Sources

    Get PDF
    Neural synchronization is a mechanism whereby functionally specific brain regions establish transient networks for perception, cognition, and action. Direct addition of weak noise (fast random fluctuations) to various neural systems enhances synchronization through the mechanism of stochastic resonance (SR). Moreover, SR also occurs in human perception, cognition, and action. Perception, cognition, and action are closely correlated with, and may depend upon, synchronized oscillations within specialized brain networks. We tested the hypothesis that SR-mediated neural synchronization occurs within and between functionally relevant brain areas and thus could be responsible for behavioral SR. We measured the 40-Hz transient response of the human auditory cortex to brief pure tones. This response arises when the ongoing, random-phase, 40-Hz activity of a group of tuned neurons in the auditory cortex becomes synchronized in response to the onset of an above-threshold sound at its “preferred” frequency. We presented a stream of near-threshold standard sounds in various levels of added broadband noise and measured subjects' 40-Hz response to the standards in a deviant-detection paradigm using high-density EEG. We used independent component analysis and dipole fitting to locate neural sources of the 40-Hz response in bilateral auditory cortex, left posterior cingulate cortex and left superior frontal gyrus. We found that added noise enhanced the 40-Hz response in all these areas. Moreover, added noise also increased the synchronization between these regions in alpha and gamma frequency bands both during and after the 40-Hz response. Our results demonstrate neural SR in several functionally specific brain regions, including areas not traditionally thought to contribute to the auditory 40-Hz transient response. In addition, we demonstrated SR in the synchronization between these brain regions. Thus, both intra- and inter-regional synchronization of neural activity are facilitated by the addition of moderate amounts of random noise. Because the noise levels in the brain fluctuate with arousal system activity, particularly across sleep-wake cycles, optimal neural noise levels, and thus SR, could be involved in optimizing the formation of task-relevant brain networks at several scales under normal conditions

    Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect

    Get PDF
    Background: Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1) - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant.Methods: The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls.Results: Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 \ub1 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 \ub1 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 \ub1 12.4% of total phospholipid content).Conclusion: Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects

    Does General Parenting Context Modify Adolescents' Appraisals and Coping with a Situation of Parental Regulation? The Case of Autonomy-Supportive Parenting

    Get PDF
    Theory and research suggest that adolescents differ in their appraisals and coping reactions in response to parental regulation. Less is known, however, about factors that determine these differences in adolescents’ responses. In this study, we examined whether adolescents' appraisals and coping reactions depend upon parents’ situation-specific autonomy-supportive or controlling communication style (i.e., the situation) in interaction with adolescents’ past experiences with general autonomy-supportive parenting (i.e., the parenting context). Whereas in Study 1 (N = 176) adolescents’ perceived general autonomy-supportive parenting context was assessed at one point in time, in Study 2 (N = 126) it was assessed multiple times across a 6-year period, allowing for an estimation of trajectories of perceived autonomy-supportive parenting context. In each study, adolescents read a vignette-based scenario depicting a situation of maternal regulation (i.e., a request to study more), which was communicated in either an autonomy-supportive or a controlling way. Following this scenario, they reported upon their appraisals and their anticipated coping reactions. Results of each study indicated that both the autonomy-supportive (relative to the controlling) situation and the perceived autonomy-supportive parenting context generally related to more positive appraisals (i.e., more autonomy need satisfaction, less autonomy need frustration), as well as to more constructive coping responses (i.e., less oppositional defiance and submission, more negotiation and accommodation). In addition, situation × context interactions were found, whereby adolescents growing up in a more autonomy-supportive context seemed to derive greater benefits from the exposure to an autonomy-supportive situation and reacted more constructively to a controlling situation

    Girls' disruptive behavior and its relationship to family functioning: A review

    Get PDF
    Although a number of reviews of gender differences in disruptive behavior and parental socialization exist, we extend this literature by addressing the question of differential development among girls and by placing both disruptive behavior and parenting behavior in a developmental framework. Clarifying the heterogeneity of development in girls is important for developing and optimizing gender-specific prevention and treatment programs. In the current review, we describe the unique aspects of the development of disruptive behavior in girls and explore how the gender-specific development of disruptive behavior can be explained by family linked risk and protective processes. Based on this review, we formulate a gender-specific reciprocal model of the influence of social factors on the development of disruptive behavior in girls in order to steer further research and better inform prevention and treatment programs

    Cortical Resonance Frequencies Emerge from Network Size and Connectivity

    Get PDF
    Neural oscillations occur within a wide frequency range with different brain regions exhibiting resonance-like characteristics at specific points in the spectrum. At the microscopic scale, single neurons possess intrinsic oscillatory properties, such that is not yet known whether cortical resonance is consequential to neural oscillations or an emergent property of the networks that interconnect them. Using a network model of loosely-coupled Wilson-Cowan oscillators to simulate a patch of cortical sheet, we demonstrate that the size of the activated network is inversely related to its resonance frequency. Further analysis of the parameter space indicated that the number of excitatory and inhibitory connections, as well as the average transmission delay between units, determined the resonance frequency. The model predicted that if an activated network within the visual cortex increased in size, the resonance frequency of the network would decrease. We tested this prediction experimentally using the steady-state visual evoked potential where we stimulated the visual cortex with different size stimuli at a range of driving frequencies. We demonstrate that the frequency corresponding to peak steady-state response inversely correlated with the size of the network. We conclude that although individual neurons possess resonance properties, oscillatory activity at the macroscopic level is strongly influenced by network interactions, and that the steady-state response can be used to investigate functional networks

    Buckling Evaluation in Case of Complicated Stress Condition

    No full text
    corecore