84 research outputs found

    Long-term results of a phase II study of synchronous chemoradiotherapy in advanced muscle invasive bladder cancer.

    Get PDF
    We conducted a phase I/II study investigating synchronous chemoradiotherapy with mitomycin C and infusional 5-fluorouracil (5-FU) in muscle invasive bladder cancer. Early dose escalation results were previously published. We report the long-term toxicity and efficacy results with the optimised regimen. Patients with muscle invasive bladder cancer with glomerular filtration rate >25 ml min(-1) were eligible. Mitomycin (12 mg m(-2) on day 1 only) and infusional 5-FU (500 mg m(-2) day(-1)) for 5 days were administered during weeks 1 and 4 of radiotherapy of 55 Gy in 20 fractions. A total of 41 patients were enrolled, median age was 68 years, 33 were male and eight female patients. Out of the 41 patients, 20 (49%) had hydronephrosis at presentation and 25 (62%) had T3b or T4 disease. Four patients experienced Grade III thrombocytopenia and three patients had Grade III neutropenia. There were no episodes of febrile neutropenia. Four patients experienced Grade III diarrhoea and 1 Grade III urgency and dysuria. Six patients did not undergo cystoscopic evaluation due to early metastatic spread although there was no clinical suggestion of bladder failure. In all, out of 35 evaluable patients, 25 (71%) had macroscopic complete response at 3-month cystoscopy, and biopsy confirmed in 24 out of 25. A total of 16 (39%) patients remain alive with a median follow-up of 50.7 (range 23.5-68.8) months, 14 with a functioning bladder with no reported long-term treatment-related bladder or bowel toxicity. Five out of 41 patients have undergone salvage cystectomy: two for persistent CIS, two T1 and one muscle invasive recurrence. Four patients have received intravesical chemotherapy, of whom two remain alive with a functioning bladder. Overall 12-, 24- and 60-month (m) survival rates were 68, 49 and 36%. Local and distant progression free rates were 82 and 86% at 12-m and 79 and 75% at 24-m. Organ preservation using multimodality therapy is feasible and safe, even in patients with poor renal reserve, and does not compromise salvage therapies. A national phase III trial BC2001 (www.bc2001.org.uk) exploring the effects of synchronous chemoradiotherapy with this regimen is currently recruiting

    How Molecular Motors Are Arranged on a Cargo Is Important for Vesicular Transport

    Get PDF
    The spatial organization of the cell depends upon intracellular trafficking of cargos hauled along microtubules and actin filaments by the molecular motor proteins kinesin, dynein, and myosin. Although much is known about how single motors function, there is significant evidence that cargos in vivo are carried by multiple motors. While some aspects of multiple motor function have received attention, how the cargo itself —and motor organization on the cargo—affects transport has not been considered. To address this, we have developed a three-dimensional Monte Carlo simulation of motors transporting a spherical cargo, subject to thermal fluctuations that produce both rotational and translational diffusion. We found that these fluctuations could exert a load on the motor(s), significantly decreasing the mean travel distance and velocity of large cargos, especially at large viscosities. In addition, the presence of the cargo could dramatically help the motor to bind productively to the microtubule: the relatively slow translational and rotational diffusion of moderately sized cargos gave the motors ample opportunity to bind to a microtubule before the motor/cargo ensemble diffuses out of range of that microtubule. For rapidly diffusing cargos, the probability of their binding to a microtubule was high if there were nearby microtubules that they could easily reach by translational diffusion. Our simulations found that one reason why motors may be approximately 100 nm long is to improve their ‘on’ rates when attached to comparably sized cargos. Finally, our results suggested that to efficiently regulate the number of active motors, motors should be clustered together rather than spread randomly over the surface of the cargo. While our simulation uses the specific parameters for kinesin, these effects result from generic properties of the motors, cargos, and filaments, so they should apply to other motors as well

    The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism

    Get PDF
    The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans

    HFE gene mutations increase the risk of coronary heart disease in women

    Get PDF
    The purpose of the present study is to examine HFE gene mutations in relation to newly diagnosed (incident) coronary heart disease (CHD). In a population-based follow-up study of 7,983 individuals aged 55 years and older, we compared the risk of incident CHD between HFE carriers and non-carriers, overall and stratified by sex and smoking status. HFE mutations were significantly associated with an increased risk of incident CHD in women but not in men (hazard ratio [HR] for women = 1.7, 95% confidence interval [CI] 1.2–2.4 versus HR for men = 0.9, 95% CI 0.7–1.2). This increased CHD risk associated with HFE mutations in women was statistically significant in never smokers (HR = 1.8, 95% CI 1.1–2.8) and current smokers (HR = 3.1, 95% CI 1.4–7.1), but not in former smokers (HR = 1.3, 95% CI 0.7–2.4). HFE mutations are associated with increased risk of incident CHD in women

    Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating) and unisexual reproduction (same-sex mating). Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1α/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell–cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological processes central to fungal development and virulence

    Sex in the PAC: A hidden affair in dark septate endophytes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or <it>in vitro </it>and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the <it>Phialocephala fortinii </it>s. l. - <it>Acephala applanata </it>species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (<it>MAT</it>) genes involved in reproductive processes.</p> <p>Results</p> <p>The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas <it>A. applanata </it>had a homothallic (self-fertile) <it>MAT </it>locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. <it>MAT </it>genes were shown to evolve under strong purifying selection.</p> <p>Conclusions</p> <p>The signature of sex was found in worldwide populations of PAC species and functionality of <it>MAT </it>genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and <it>in vitro </it>crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.</p

    Wood Utilization Is Dependent on Catalase Activities in the Filamentous Fungus Podospora anserina

    Get PDF
    Catalases are enzymes that play critical roles in protecting cells against the toxic effects of hydrogen peroxide. They are implicated in various physiological and pathological conditions but some of their functions remain unclear. In order to decipher the role(s) of catalases during the life cycle of Podospora anserina, we analyzed the role of the four monofunctional catalases and one bifunctional catalase-peroxidase genes present in its genome. The five genes were deleted and the phenotypes of each single and all multiple mutants were investigated. Intriguingly, although the genes are differently expressed during the life cycle, catalase activity is dispensable during both vegetative growth and sexual reproduction in laboratory conditions. Catalases are also not essential for cellulose or fatty acid assimilation. In contrast, they are strictly required for efficient utilization of more complex biomass like wood shavings by allowing growth in the presence of lignin. The secreted CATB and cytosolic CAT2 are the major catalases implicated in peroxide resistance, while CAT2 is the major player during complex biomass assimilation. Our results suggest that P. anserina produces external H2O2 to assimilate complex biomass and that catalases are necessary to protect the cells during this process. In addition, the phenotypes of strains lacking only one catalase gene suggest that a decrease of catalase activity improves the capacity of the fungus to degrade complex biomass

    Bladder Sparing Approaches for Muscle-Invasive Bladder Cancers.

    Get PDF
    OPINION STATEMENT: Organ preservation has been increasingly utilised in the management of muscle-invasive bladder cancer. Multiple bladder preservation options exist, although the approach of maximal TURBT performed along with chemoradiation is the most favoured. Phase III trials have shown superiority of chemoradiotherapy compared to radiotherapy alone. Concurrent chemoradiotherapy gives local control outcomes comparable to those of radical surgery, but seemingly more superior when considering quality of life. Bladder-preserving techniques represent an alternative for patients who are unfit for cystectomy or decline major surgical intervention; however, these patients will need lifelong rigorous surveillance. It is important to emphasise to the patients opting for organ preservation the need for lifelong bladder surveillance as risk of recurrence remains even years after radical chemoradiotherapy treatment. No randomised control trials have yet directly compared radical cystectomy with bladder-preserving chemoradiation, leaving the age-old question of superiority of one modality over another unanswered. Radical cystectomy and chemoradiation, however, must be seen as complimentary treatments rather than competing treatments. Meticulous patient selection is vital in treatment modality selection with the success of recent trials within the field of bladder preservation only being possible through this application of meticulous selection criteria compared to previous decades. A multidisciplinary approach with radiation oncologists, medical oncologists, and urologists is needed to closely monitor patients who undergo bladder preservation in order to optimise outcomes

    An investigation into the facilitative effects of two kinds of adjunct questions on the learning and remembering of teachers' college students during the reading of textual materials with an associated study of student reading improvement incorporating a survey of their textbook reading habits, attitudes and problems.

    Get PDF
    corecore