789 research outputs found

    Young star clusters in M31

    Full text link
    In our study of M31's globular cluster system with MMT/Hectospec, we have obtained high-quality spectra of 85 clusters with ages less than 1 Gyr. With the exception of Hubble V, the young cluster in NGC 205, we find that these young clusters have kinematics and spatial distribution consistent with membership in M31's young disk. Preliminary estimates of the cluster masses and structural parameters, using spectroscopically derived ages and HST imaging, confirms earlier suggestions that M31 has clusters similar to the LMC's young populous clusters.Comment: 4 pages, 1 figure, contributed talk at "Galaxies in the Local Volume" conference in Sydney, July 200

    Threshold effects of air pollution and climate change on understory plant communities at forested sites in the eastern United States

    Get PDF
    Forest understory plant communities in the eastern United States are often diverse and are potentially sensitive to changes in climate and atmospheric inputs of nitrogen caused by air pollution. In recent years, empirical and processed-based mathematical models have been developed to investigate such changes in plant communities. In the study reported here, a robust set of understory vegetation response functions (expressed as version 2 of the Probability of Occurrence of Plant Species model for the United States [US-PROPS v2]) was developed based on observations of forest understory and grassland plant species presence/absence and associated abiotic characteristics derived from spatial datasets. Improvements to the US-PROPS model, relative to version 1, were mostly focused on inclusion of additional input data, development of custom species-level input datasets, and implementation of methods to address uncertainty. We investigated the application of US-PROPS v2 to evaluate the potential impacts of atmospheric nitrogen (N) and sulfur (S) deposition, and climate change on forest ecosystems at three forested sites located in New Hampshire, Virginia, and Tennessee in the eastern United States. Species-level N and S critical loads (CLs) were determined under ambient deposition at all three modeled sites. The lowest species-level CLs of N deposition at each site were between 2 and 11 kg N/ha/yr. Similarly, the lowest CLs of S deposition, based on the predicted soil pH response, were less than 2 kg S/ha/yr among the three sites. Critical load exceedance was found at all three model sites. The New Hampshire site included the largest percentage of species in exceedance. Simulated warming air temperature typically resulted in lower maximum occurrence probability, which contributed to lower CLs of N and S deposition. The US-PROPS v2 model, together with the PROPS-CLF model to derive CL functions, can be used to develop site-specific CLs for understory plants within broad regions of the United States. This study demonstrates that species-level CLs of N and S deposition are spatially variable according to the climate, light availability, and soil characteristics at a given location. Although the species niche models generally performed well in predicting occurrence probability, there remains uncertainty with respect to the accuracy of reported CLs. As such, the specific CLs reported here should be considered as preliminary estimates. Graphical abstrac

    Computation of Light Scattering in Young Stellar Objects

    Full text link
    A Monte Carlo light scattering code incorporating aligned non-spherical particles is described. The major effects on the flux distribution, linear polarisation and circular polarisation are presented, with emphasis on the application to Young Stellar Objects (YSOs). The need for models with non-spherical particles in order to successfully model polarisation data is reviewed. The ability of this type of model to map magnetic field structure in embedded YSOs is described. The possible application to the question of the origin of biomolecular homochirality via UV circular polarisation in star forming regions is also briefly discussed.Comment: Accepted by The Journal of Quantitative Spectroscopy and Radiative Transfer. Replaced version corrects an error in the definition of the sense of Cpol in the published version and other minor errors found at the proof stag

    An extension of the coupled-cluster method: A variational formalism

    Full text link
    A general quantum many-body theory in configuration space is developed by extending the traditional coupled cluter method (CCM) to a variational formalism. Two independent sets of distribution functions are introduced to evaluate the Hamiltonian expectation. An algebraic technique for calculating these distribution functions via two self-consistent sets of equations is given. By comparing with the traditional CCM and with Arponen's extension, it is shown that the former is equivalent to a linear approximation to one set of distribution functions and the later is equivalent to a random-phase approximation to it. In additional to these two approximations, other higher-order approximation schemes within the new formalism are also discussed. As a demonstration, we apply this technique to a quantum antiferromagnetic spin model.Comment: 15 pages. Submitted to Phys. Rev.

    Nodes of the Gap Function and Anomalies in Thermodynamic Properties of Superfluid 3^3He

    Full text link
    Departures of thermodynamic properties of three-dimensional superfluid 3^3He from the predictions of BCS theory are analyzed. Attention is focused on deviations of the ratios Δ(T=0)/Tc\Delta(T=0)/T_c and [Cs(Tc)−Cn(Tc)]/Cn(Tc)[C_s(T_c)-C_n(T_c)]/C_n(T_c) from their BCS values, where Δ(T=0)\Delta(T=0) is the pairing gap at zero temperature, TcT_c is the critical temperature, and CsC_s and CnC_n are the superfluid and normal specific heats. We attribute these deviations to the momentum dependence of the gap function Δ(p)\Delta(p), which becomes well pronounced when this function has a pair of nodes lying on either side of the Fermi surface. We demonstrate that such a situation arises if the P-wave pairing interaction V(p1,p2)V(p_1,p_2), evaluated at the Fermi surface, has a sign opposite to that anticipated in BCS theory. Taking account of the momentum structure of the gap function, we derive a closed relation between the two ratios that contains no adjustable parameters and agrees with the experimental data. Some important features of the effective pairing interaction are inferred from the analysis.Comment: 17 pages, 4 figure

    Zero-point vacancies in quantum solids

    Full text link
    A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known that both JWF and SWF describe a quantum solid with also a finite equilibrium concentration of vacancies x_v. We outline a route for estimating x_v by exploiting the existing formal equivalence between the absolute square of the ground state wave function and the Boltzmann weight of a classical solid. We compute x_v for the quantum solids described by JWF and SWF employing very accurate numerical techniques. For JWF we find a very small value for the zero point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently gives the best variational description of solid 4He, we find the significantly larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also study two and three vacancies. We find that there is a strong short range attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy

    Study of solid 4He in two dimensions. The issue of zero-point defects and study of confined crystal

    Full text link
    Defects are believed to play a fundamental role in the supersolid state of 4He. We report on studies by exact Quantum Monte Carlo (QMC) simulations at zero temperature of the properties of solid 4He in presence of many vacancies, up to 30 in two dimensions (2D). In all studied cases the crystalline order is stable at least as long as the concentration of vacancies is below 2.5%. In the 2D system for a small number, n_v, of vacancies such defects can be identified in the crystalline lattice and are strongly correlated with an attractive interaction. On the contrary when n_v~10 vacancies in the relaxed system disappear and in their place one finds dislocations and a revival of the Bose-Einstein condensation. Thus, should zero-point motion defects be present in solid 4He, such defects would be dislocations and not vacancies, at least in 2D. In order to avoid using periodic boundary conditions we have studied the exact ground state of solid 4He confined in a circular region by an external potential. We find that defects tend to be localized in an interfacial region of width of about 15 A. Our computation allows to put as upper bound limit to zero--point defects the concentration 0.003 in the 2D system close to melting density.Comment: 17 pages, accepted for publication in J. Low Temp. Phys., Special Issue on Supersolid

    BCC vs. HCP - The Effect of Crystal Symmetry on the High Temperature Mobility of Solid 4^4He

    Full text link
    We report results of torsional oscillator (TO) experiments on solid 4^4He at temperatures above 1K. We have previously found that single crystals, once disordered, show some mobility (decoupled mass) even at these rather high temperatures. The decoupled mass fraction with single crystals is typically 20- 30%. In the present work we performed similar measurements on polycrystalline solid samples. The decoupled mass with polycrystals is much smaller, ∼\sim 1%, similar to what is observed by other groups. In particular, we compared the properties of samples grown with the TO's rotation axis at different orientations with respect to gravity. We found that the decoupled mass fraction of bcc samples is independent of the angle between the rotation axis and gravity. In contrast, hcp samples showed a significant difference in the fraction of decoupled mass as the angle between the rotation axis and gravity was varied between zero and 85 degrees. Dislocation dynamics in the solid offers one possible explanation of this anisotropy.Comment: 10 pages, 5 figures, to appear in Journal of Low Temperature Physics - special issue on Supersolidit

    A glassy contribution to the heat capacity of hcp 4^4He solids

    Full text link
    We model the low-temperature specific heat of solid 4^4He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature, T<ΘD/50T < \Theta_D/50. By introducing a cutoff energy in the two-level tunneling density of states, we can describe the excess specific heat observed in solid hcp 4^4He, as well as the low-temperature linear term in the specific heat. Agreement is found with recent measurements of the temperature behavior of both specific heat and pressure. These results suggest the presence of a very small fraction, at the parts-per-million (ppm) level, of two-level tunneling systems in solid 4^4He, irrespective of the existence of supersolidity.Comment: 11 pages, 4 figure

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure
    • …
    corecore