300 research outputs found
Distribution of mtDNA haplotypes in North-Atlantic humpback whales:The influence of behavior on population structure
Samples from 136 humpback whales Megaptera novaeangliae, representing 5 feeding aggregations in the North Atlantic and 1 in the Antarctic, were analyzed with respect to the sequence variation in the mitochondrial (mt) control region. A total of 288 base pairs was sequenced by direct sequencing of asymmetrically amplified DNA. Thirty-one different haplotypes were identified. The nucleotide diversity for the total sample was estimated to be 2.6 %, which is high relative to other North Atlantic cetaceans. The degree of genetic differentiation in various subsets of the samples was estimated and tested for statistical significance by Monte Carlo simulations. Significant degrees of heterogeneity were found between the Antarctic and all North Atlantic areas, as well as between Iceland and the western North Atlantic samples. A genealogical tree was estimated for the 31 haplotypes and rooted with the homologous sequence from a fin whale Balaenoptera physalus. The branching pattern in the genealogical tree suggests that the North Atlantic Ocean has been populated by 2 independent influxes of humpback whales. The combined results from the homogeneity tests and the genealogical tree indicate that behaviour (in this case maternally directed site fidelity to a foraging area) can influence the population structure of marine cetaceans on an evolutionary time scale
Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a southern hemisphere coastal feeding ground
Site fidelity is common among migratory cetaceans, including humpback whales (Megaptera novaeangliae). In the Northern Hemisphere it has been found that fidelity to humpback whale feeding grounds is transferred maternally but this has never been shown for the species in the Southern Hemisphere. We examined this in a unique feeding area off west South Africa using resighting data of 68 individually identified humpback whales by means of photographic (tail flukes and dorsal fins) and/or molecular methods (microsatellite genotyping) over an 18 year span. We found short-term association patterns and recurrent visits typical of other feeding grounds. Males and females had different seasonality of attendance. Significant female-dominated presence corresponded to timing of an expected influx of females on their southward migration from the breeding ground: firstly non-nursing (possibly pregnant) females in mid-spring, and mothers and calves in mid-to late summer. The potential benefit of this mid-latitude feeding area for females is illustrated by a record of a cow with known age of at least 23 years that produced calves in three consecutive years, each of which survived to at least six months of age: the first record of successful post-partum ovulation for this species in the Southern Hemisphere. We recorded association of a weaned calf with its mother, and a recurring association between a non-lactating female and male over more than two years. Moreover, three animals first identified as calves returned to the same area in subsequent years, sometimes on the same day as their mothers. This, together with numerous Parent-Offspring relations detected genetically among and between resighted and non-resighted whales is strongly suggestive of maternally derived site fidelity at a small spatial scale by a small sub-population of humpback whales.National Research Foundation (NRF), South Africa [2047517]; PADI Project AWARE (UK) [095]; Earthwatch Institute (project title "Whales of South Africa"
Distribution of mtDNA haplotypes in North-Atlantic humpback whales:The influence of behavior on population structure
Samples from 136 humpback whales Megaptera novaeangliae, representing 5 feeding aggregations in the North Atlantic and 1 in the Antarctic, were analyzed with respect to the sequence variation in the mitochondrial (mt) control region. A total of 288 base pairs was sequenced by direct sequencing of asymmetrically amplified DNA. Thirty-one different haplotypes were identified. The nucleotide diversity for the total sample was estimated to be 2.6 %, which is high relative to other North Atlantic cetaceans. The degree of genetic differentiation in various subsets of the samples was estimated and tested for statistical significance by Monte Carlo simulations. Significant degrees of heterogeneity were found between the Antarctic and all North Atlantic areas, as well as between Iceland and the western North Atlantic samples. A genealogical tree was estimated for the 31 haplotypes and rooted with the homologous sequence from a fin whale Balaenoptera physalus. The branching pattern in the genealogical tree suggests that the North Atlantic Ocean has been populated by 2 independent influxes of humpback whales. The combined results from the homogeneity tests and the genealogical tree indicate that behaviour (in this case maternally directed site fidelity to a foraging area) can influence the population structure of marine cetaceans on an evolutionary time scale
How large should whales be?
The evolution and distribution of species body sizes for terrestrial mammals
is well-explained by a macroevolutionary tradeoff between short-term selective
advantages and long-term extinction risks from increased species body size,
unfolding above the 2g minimum size induced by thermoregulation in air. Here,
we consider whether this same tradeoff, formalized as a constrained
convection-reaction-diffusion system, can also explain the sizes of fully
aquatic mammals, which have not previously been considered. By replacing the
terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial
mammal tradeoff model accurately predicts, with no tunable parameters, the
observed body masses of all extant cetacean species, including the 175,000,000g
Blue Whale. This strong agreement between theory and data suggests that a
universal macroevolutionary tradeoff governs body size evolution for all
mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus
be attributed mainly to the increased convective heat loss is water, which
shifts the species size distribution upward and pushes its right tail into
ranges inaccessible to terrestrial mammals. Under this macroevolutionary
tradeoff, the largest expected species occurs where the rate at which
smaller-bodied species move up into large-bodied niches approximately equals
the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table
Population Structure of Humpback Whales from Their Breeding Grounds in the South Atlantic and Indian Oceans
Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region
Prognostic relevance of a T-type calcium channels gene signature in solid tumours: A correlation ready for clinical validation
BackgroundT-type calcium channels (TTCCs) mediate calcium influx across the cell membrane. TTCCs regulate numerous physiological processes including cardiac pacemaking and neuronal activity. In addition, they have been implicated in the proliferation, migration and differentiation of tumour tissues. Although the signalling events downstream of TTCC-mediated calcium influx are not fully elucidated, it is clear that variations in the expression of TTCCs promote tumour formation and hinder response to treatment.MethodsWe examined the expression of TTCC genes (all three subtypes; CACNA-1G, CACNA-1H and CACNA-1I) and their prognostic value in three major solid tumours (i.e. gastric, lung and ovarian cancers) via a publicly accessible database.ResultsIn gastric cancer, expression of all the CACNA genes was associated with overall survival (OS) among stage I-IV patients (all pConclusionsAlterations in CACNA gene expression are linked to tumour prognosis. Gastric cancer represents the most promising setting for further evaluation
Whale, whale, everywhere: increasing abundance of western South Atlantic humpback whales (Megaptera novaeangliae) in their wintering grounds
The western South Atlantic (WSA) humpback whale population inhabits the coast of Brazil during the breeding and calving season in winter and spring. This population was depleted to near extinction by whaling in the mid-twentieth century. Despite recent signs of recovery, increasing coastal and offshore development pose potential threats to these animals. Therefore, continuous monitoring is needed to assess population status and support conservation strategies. The aim of this work was to present ship-based line-transect estimates of abundance for humpback whales in their WSA breeding ground and to investigate potential changes in population size. Two cruises surveyed the coast of Brazil during August-September in 2008 and 2012. The area surveyed in 2008 corresponded to the currently recognized population breeding area; effort in 2012 was limited due to unfavorable weather conditions. WSA humpback whale population size in 2008 was estimated at 16,410 (CV = 0.228, 95% CI = 10,563–25,495) animals. In order to compare abundance between 2008 and 2012, estimates for the area between Salvador and Cabo Frio, which were consistently covered in the two years, were computed at 15,332 (CV = 0.243, 95% CI = 9,595–24,500) and 19,429 (CV = 0.101, 95% CI = 15,958–23,654) whales, respectively. The difference in the two estimates represents an increase of 26.7% in whale numbers in a 4-year period. The estimated abundance for 2008 is considered the most robust for the WSA humpback whale population because the ship survey conducted in that year minimized bias from various sources. Results presented here indicate that in 2008, the WSA humpback whale population was at least around 60% of its estimated pre-modern whaling abundance and that it may recover to its pre-exploitation size sooner than previously estimated.Publisher PDFPeer reviewe
- …