127 research outputs found

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Modeling Trap-Awareness and Related Phenomena in Capture-Recapture Studies

    Get PDF
    Trap-awareness and related phenomena whereby successive capture events are not independent is a feature of the majority of capture-recapture studies. This phenomenon was up to now difficult to incorporate in open population models and most authors have chosen to neglect it although this may have damaging consequences. Focusing on the situation where animals exhibit a trap response at the occasion immediately following one where they have been trapped but revert to their original naïve state if they are missed once, we show that trap-dependence is more naturally viewed as a state transition and is amenable to the current models of capture-recapture. This approach has the potential to accommodate lasting or progressively waning trap effects

    Perinatal Asphyxia Reduces Dentate Granule Cells and Exacerbates Methamphetamine-Induced Hyperlocomotion in Adulthood

    Get PDF
    Background: Obstetric complications have been regarded as a risk factor for schizophrenia later in life. One of the mechanisms underlying the association is postulated to be a hypoxic process in the brain in the offspring around the time of birth. Hippocampus is one of the brain regions implicated in the late-onset dopaminergic dysfunction associated with hypoxic obstetric complications. Methodology/Principal Findings: We used an animal model of perinatal asphyxia, in which rat pups were exposed to 15 min of intrauterine anoxia during Cesarean section birth. At 6 and 12 weeks after birth, the behavior of the pups was assessed using a methamphetamine-induced locomotion test. In addition, the histopathology of the hippocampus was examined by means of stereology. At 6 weeks, there was no change in the methamphetamine-induced locomotion. However, at 12 weeks of age, we found an elevation in methamphetamine-induced locomotor activity, which was associated with an increase of dopamine release in the nucleus accumbens. At the same age, we also found a reduction of the dentate granule cells of the hippocampus. Conclusions/Significance: These results suggest that the dopaminergic dysregulation after perinatal asphyxia is associated with a reduction in hippocampal dentate granule cells, and this may partly contribute to the pathogenesis of schizophrenia.浜松医科大学学位論文 医博第548号(平成21年3月18日

    Differential effects of cytokines and corticosteroids on Toll-like receptor 2 expression and activity in human airway epithelia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recognition of microbial molecular patterns via Toll-like receptors (TLRs) is critical for mucosal defenses.</p> <p>Methods</p> <p>Using well-differentiated primary cultures of human airway epithelia, we investigated the effects of exposure of the cells to cytokines (TNF-α and IFN-γ) and dexamethasone (dex) on responsiveness to the TLR2/TLR1 ligand Pam3CSK4. Production of IL-8, CCL20, and airway surface liquid antimicrobial activity were used as endpoints.</p> <p>Results</p> <p>Microarray expression profiling in human airway epithelia revealed that first response cytokines markedly induced TLR2 expression. Real-time PCR confirmed that cytokines (TNF-α and IFN-γ), dexamethasone (dex), or cytokines + dex increased TLR2 mRNA abundance. A synergistic increase was seen with cytokines + dex. To assess TLR2 function, epithelia pre-treated with cytokines ± dex were exposed to the TLR2/TLR1 ligand Pam3CSK4 for 24 hours. While cells pre-treated with cytokines alone exhibited significantly enhanced IL-8 and CCL20 secretion following Pam3CSK4, mean IL-8 and CCL20 release decreased in Pam3CSK4 stimulated cells following cytokines + dex pre-treatment. This marked increase in inflammatory gene expression seen after treatment with cytokines followed by the TLR2 ligand did not correlate well with NF-κB, Stat1, or p38 MAP kinase pathway activation. Cytokines also enhanced TLR2 agonist-induced beta-defensin 2 mRNA expression and increased the antimicrobial activity of airway surface liquid. Dex blocked these effects.</p> <p>Conclusion</p> <p>While dex treatment enhanced TLR2 expression, co-administration of dex with cytokines inhibited airway epithelial cell responsiveness to TLR2/TLR1 ligand over cytokines alone. Enhanced functional TLR2 expression following exposure to TNF-α and IFN-γ may serve as a dynamic means to amplify epithelial innate immune responses during infectious or inflammatory pulmonary diseases.</p

    The role of epigenetic dysregulation in the epidemic of allergic disease

    Get PDF
    The epidemic of allergic disease in early life is one of the clearest indicators that the developing immune system is vulnerable to modern environmental changes. A range of environmental exposures epidemiologically associated with allergic disease have been shown to have effects on the foetal immune function in pregnancy, including microbial burden, dietary changes and environmental pollutants. Preliminary studies now suggest that these early effects on immune development may be mediated epigenetically through a variety of processes that collectively modify gene expression and allergic susceptibility and that these effects are potentially heritable across generations. It is also possible that rising rates of maternal allergy, a recognised direct risk factor for infant allergic disease, may be further amplifying the effects of environmental changes. Whilst effective prevention strategies are the ultimate goal in reversing the allergy epidemic, the specific environmental drivers, target genes, and intracellular pathways and mechanisms of early life immune programming are still unclear. It is hoped that identifying genes that are differentially regulated in association with subsequent allergic disease will assist in identifying causal pathways and upstream contributing environmental factors. In this way, epigenetic paradigms are likely to provide valuable insights into how the early environment can be modified to more favourably drive immune development and reverse the allergic epidemic

    Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies

    Get PDF
    The myeloproliferative neoplasms (MPNs) are a group of clonal hematological malignancies characterized by a hypercellular bone marrow and a tendency to develop thrombotic complications and to evolve to myelofibrosis and acute leukemia. Unlike chronic myelogenous leukemia, where a single disease-initiating genetic event has been identified, a more complicated series of genetic mutations appear to be responsible for the BCR-ABL1-negative MPNs which include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have revealed a number of epigenetic alterations that also likely contribute to disease pathogenesis and determine clinical outcome. Increasing evidence indicates that alterations in DNA methylation, histone modification, and microRNA expression patterns can collectively influence gene expression and potentially contribute to MPN pathogenesis. Examples include mutations in genes encoding proteins that modify chromatin structure (EZH2, ASXL1, IDH1/2, JAK2V617F, and IKZF1) as well as epigenetic modification of genes critical for cell proliferation and survival (suppressors of cytokine signaling, polycythemia rubra vera-1, CXC chemokine receptor 4, and histone deacetylase (HDAC)). These epigenetic lesions serve as novel targets for experimental therapeutic interventions. Clinical trials are currently underway evaluating HDAC inhibitors and DNA methyltransferase inhibitors for the treatment of patients with MPNs

    Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways

    Get PDF
    Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (,23%) than the other two, COPI (,9%) and COPII (,8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of evolutionary adaptability in the three routes

    Persistent and polarised global actin flow is essential for directionality during cell migration

    Get PDF
    Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence
    corecore