25 research outputs found
Broadband, Polarization-Sensitive Photodetector Based on Optically-Thick Films of Macroscopically Long, Dense, and Aligned Carbon Nanotubes
Increasing performance demands on photodetectors and solar cells require the development of entirely new
materials and technological approaches.Wereport on the fabrication and optoelectronic characterization of
a photodetector based on optically-thick films of dense, aligned, and macroscopically long single-wall
carbon nanotubes. The photodetector exhibits broadband response from the visible to the mid-infrared
under global illumination, with a response time less than 32 ms. Scanning photocurrent microscopy
indicates that the signal originates at the contact edges, with an amplitude and width that can be tailored by
choosing different contact metals. A theoretical model demonstrates the photothermoelectric origin of the
photoresponse due to gradients in the nanotube Seebeck coefficient near the contacts. The experimental and
theoretical results open a new path for the realization of optoelectronic devices based on
three-dimensionally organized nanotubes
Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition
The structure of vertically aligned carbon nanotubes (CNTs) severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD) was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future
Public Versus Private: Does It Matter for Water Conservation? Insights from California
This article asks three connected questions: First, does the public view private and public utilities differently, and if so, does this affect attitudes to conservation? Second, do public and private utilities differ in their approaches to conservation? Finally, do differences in the approaches of the utilities, if any, relate to differences in public attitudes? We survey public attitudes in California toward (hypothetical but plausible) voluntary and mandated water conservation, as well as to price increases, during a recent period of shortage. We do this by interviewing households in three pairs of adjacent public and private utilities. We also survey managers of public and private urban water utilities to see if they differ in their approaches to conservation and to their customers. On the user side we do not find pronounced differences, though a minority of customers in all private companies would be more willing to conserve or pay higher prices under a public operator. No respondent in public utility said the reverse. Negative attitudes toward private operators were most pronounced in the pair marked by a controversial recent privatization and a price hike. Nonetheless, we find that California’s history of recurrent droughts and the visible role of the state in water supply and drought management undermine the distinction between public and private. Private utilities themselves work to underplay the distinction by stressing the collective ownership of the water source and the collective value of conservation. Overall, California’s public utilities appear more proactive and target-oriented in asking their customers to conserve than their private counterparts and the state continues to be important in legitimating and guiding conservation behavior, whether the utility is in public hands or private
High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles
Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide –mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs
Laser Interactions for the Synthesis and In Situ Diagnostics of Nanomaterials
Laser interactions have traditionall been at thec center of nanomaterials science, providing highly nonequilibrium growth conditions to enable the syn- thesis of novel new nanoparticles, nanotubes, and nanowires with metastable phases. Simultaneously, lasers provide unique opportunities for the remote char- acterization of nanomaterial size, structure, and composition through tunable laser spectroscopy, scattering, and imaging. Pulsed lasers offer the opportunity, there- fore, to supply the required energy and excitation to both control and understand the growth processes of nanomaterials, providing valuable views of the typically nonequilibrium growth kinetics and intermediates involved. Here we illustrate the key challenges and progress in laser interactions for the synthesis and in situ diagnostics of nanomaterials through recent examples involving primarily carbon nanomaterials, including the pulsed growth of carbon nanotubes and graphene
Exploiting Environmental Transmission Electron Microscopy Approaches to Understand the Origin of Carbon Nanotube Growth Termination
Early antiretroviral therapy with raltegravir generates sustained reductions in HIV reservoirs but not lower T-cell activation levels.
OBJECTIVE: The initiation of antiretroviral therapy (ART) during primary infection may offer clinical benefits for HIV-infected individuals by reducing HIV DNA reservoir size and chronic T-cell activation. Current evidence for the advantages of early ART, however, are mostly derived from cross-sectional studies, with the long-term benefits yet to be ascertained. DESIGN/METHODS: We conducted an open-label, nonrandomized study, monitoring for 3 years: plasma viral load (pVL), T-cell phenotypes, and peripheral CD4(+) T-cell associated total, integrated and 2-long terminal repeat HIV DNA species. The study included 16 treatment-naive individuals initiating ART with raltegravir and Truvada during either primary (PHI, n = 8) or chronic (CHI, n = 8) HIV infection. RESULTS: ART initiated during PHI compared with CHI generated significant reductions of peripheral CD4(+) T-cell HIV DNA reservoirs that were sustained for 3 years of therapy. Median log10 HIV DNA copies/10(6) CD4(+) T cells at the final visit: total; CHI = 3.23 > PHI = 2.72, P PHI = 1.77, P < 0.01. Similar trends were observed for pVL, however, did not reach significance: log10 HIV RNA copies/ml plasma at the final visit: CHI = 1.3 ≥ PHI = 0.39, P = 0.08. Both cohorts displayed similar and elevated levels of CD38/HLA-DR coexpression on CD4(+) and CD8(+) T cells relative to uninfected healthy controls. CONCLUSION: The reduction in HIV DNA reservoirs generated by the early initiation of ART was sustained for 3 years of therapy. Although the PHI cohort trended to lower levels of pVL, and pVL was associated with CD8(+) T-cell activation, no differences in T-cell activation were observed between the PHI and CHI groups
