1,318 research outputs found

    Simulation of Near Edge X-ray Absorption Fine Structure (NEXAFS) Measurements of CO on Supported Pd Nanoparticles

    Get PDF
    Near edge X-ray absorption fine structure (NEXAFS) measurements of CO on Pd nanoparticles have been simulated. This was achieved by calculating the CO π* resonance signal of CO on a nanoparticle both as a function of the angle of incidence (I vs θ) and the direction of the electric field vector E of the incident photon beam (I vs β), with the nanoparticle defined as a (111) top facet with {111} and {100} side facets. The dependence of the π* resonance intensity signal of CO covered nanoparticles on the particle geometry and orientation as well as the bond orientation of CO is examined. In addition, we compare our simulations to a set of C K-edge NEXAFS experimental data obtained from a single Pd nanoparticle decorated with CO. Our simulation predicts that the nanoparticle has a high lateral aspect ratio of 37.7 ± 4.1

    Direct Visualization of Soliton CO Overlayers on Supported Pd Nanoparticles

    Get PDF
    The interaction of carbon monoxide (CO) molecules with the facets of noble metal nanoparticles forms the basis of many important catalytic reactions. Using scanning tunneling microscopy (STM), we have studied the adsorption of CO molecules on the (111) facets of Pd nanocrystals supported on a rutile TiO2(110) substrate. We observed four compact CO overlayers with coverages ranging between 0.5 and 0.6 monolayers. Examination of the positions of the CO molecules in each of the unit cells reveals that one of the overlayers has a rhombic (√7 × √7) R19.1°-4CO structure. The other three form rectangular structures, namely, (7 × √3) rect-8CO, c(5 × √3) rect-3CO, and c(9 × √3) rect-5CO. These are closely related via a soliton model previously proposed on the basis of infrared absorption spectroscopy and low-energy electron diffraction. By imaging the CO molecules, we provide direct evidence for the soliton model

    Probing the local electronic structure of the cross-linked (1×2) reconstruction of rutile TiO2(110)

    Get PDF
    The electronic structure of cross-linked TiO2(110)-(1×2) has been investigated using scanning tunneling spectroscopy (STS) and by monitoring changes in ultraviolet photoelectron spectroscopy (UPS) following exposure of the surface to O2. STS reveals two states located in the bandgap, at 0.7 and 1.5 eV below the Fermi level. The population of these two states varies over different parts of the (1×2)- reconstructed surface. An addition state at 1.1 eV above the Fermi level is observed at the double link part of the structure. All of the bandgap states are attenuated following exposure to O2, while the workfunction is increased. We attribute this to an electron transfer from the surface to the adsorbed oxygen

    Tramp Ship Scheduling Problem with Berth Allocation Considerations and Time-dependent Constraints

    Full text link
    This work presents a model for the Tramp Ship Scheduling problem including berth allocation considerations, motivated by a real case of a shipping company. The aim is to determine the travel schedule for each vessel considering multiple docking and multiple time windows at the berths. This work is innovative due to the consideration of both spatial and temporal attributes during the scheduling process. The resulting model is formulated as a mixed-integer linear programming problem, and a heuristic method to deal with multiple vessel schedules is also presented. Numerical experimentation is performed to highlight the benefits of the proposed approach and the applicability of the heuristic. Conclusions and recommendations for further research are provided.Comment: 16 pages, 3 figures, 5 tables, proceedings paper of Mexican International Conference on Artificial Intelligence (MICAI) 201

    Mn and Sm doped lead titanate ceramic fibers and fiber/epoxy 13 composites

    Get PDF
    Version of RecordPublishe

    (2n×1) Reconstructions of TiO2(011) Revealed by Noncontact Atomic Force Microscopy and Scanning Tunneling Microscopy

    Get PDF
    We have used noncontact atomic force microscopy (NC-AFM) and scanning tunneling microscopy (STM) to study the rutile TiO2(011) surface. A series of (2n×1) reconstructions were observed, including two types of (4×1) reconstruction. High resolution NC-AFM and STM images indicate that the (4×1)-α phase has the same structural elements as the more widely reported (2×1) reconstruction. An array of analogous higher order (2n×1) reconstructions were also observed where n = 3-5. On the other hand, the (4×1)-β reconstruction seems to be a unique structure without higher order analogues. A model is proposed for this structure that is also based on the (2×1) reconstruction but with additional microfacets of {111} character

    Constraint programming based column generation heuristics for a ship routing and berthing time assignment problem

    Get PDF
    Author name used in this publication: King-Wah PangRefereed conference paper2010-2011 > Academic research: refereed > Refereed conference paperOther VersionPublishe

    Variation of SMSI with the Au:Pd Ratio of Bimetallic Nanoparticles on TiO2(110)

    Get PDF
    Au/Pd nanoparticles are important in a number of catalytic processes. Here we investigate the formation of Au–Pd bimetallic nanoparticles on TiO 2 (110) and their susceptibility to encapsulation using scanning tunneling microscopy, as well as Auger spectroscopy and low energy electron diffraction. Sequentially depositing 5 MLE Pd and 1 MLE Au at 298 K followed by annealing to 573 K results in a bimetallic core and Pd shell, with TiO x encapsulation on annealing to ~ 800 K. Further deposition of Au on the pinwheel type TiO x layer results in a template-assisted nucleation of Au nanoclusters, while on the zigzag type TiO x layer no preferential adsorption site of Au was observed. Increasing the Au:Pd ratio to 3 MLE Pd and 2 MLE Au results in nanoparticles that are enriched in Au at their surface, which exhibit a strong resistance towards encapsulation. Hence the degree of encapsulation of the nanoparticles during sintering can be controlled by tuning the Au:Pd ratio

    A methodology review on the incremental prognostic value of computed tomography biomarkers in addition to Framingham risk score in predicting cardiovascular disease: the use of association, discrimination and reclassification

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: Computed tomography (CT) biomarkers claim to improve cardiovascular risk stratification. This review focuses on significant differences in incremental measures between adequate and inadequate reporting practise. METHODS: Studies included were those that used Framingham Risk Score as a baseline and described the incremental value of adding calcium score or CT coronary angiogram in predicting cardiovascular risk. Searches of MEDLINE, EMBASE, Web of Science and Cochrane Central were performed with no language restriction. RESULTS: Thirty five studies consisting of 206,663 patients (men = 118,114, 55.1%) were included. The baseline Framingham Risk Score included the 1998, 2002 and 2008 iterations. Selective reporting, inconsistent reference groupings and thresholds were found. Twelve studies (34.3%) had major and 23 (65.7%) had minor alterations and the respective Δ AUC were significantly different (p = 0.015). When the baseline model performed well, the Δ AUC was relatively lower with the addition of a CT biomarker (Spearman coefficient = − 0.46, p < 0.0001; n = 33; 76 pairs of data). Other factors that influenced AUC performance included exploration of data analysis, calibration, validation, multivariable and AUC documentation (all p < 0.05). Most studies (68.7%) that reported categorical NRI (n = 16; 46 pairs of data) subjectively drew strong conclusions along with other poor reporting practices. However, no significant difference in values of NRI was found between adequate and inadequate reporting. CONCLUSIONS: The widespread practice of poor reporting particularly association, discrimination, reclassification, calibration and validation undermines the claimed incremental value of CT biomarkers over the Framingham Risk Score alone. Inadequate reporting of discrimination inflates effect estimate, however, that is not necessarily the case for reclassification.This research was funded by the National Insitute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (NIHR CLAHRC South West Peninsula)
    corecore