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Abstract 

 
We develop a constraint programming based heuristic algorithm using column generation technique to solve a ship 
routing problem which the loading and unloading times of cargoes at pickup and drop-off locations are significant. 
In order to prevent congestions at the locations, we need to assign berthing time slots to each vessel to perform the 
loading and unloading tasks at different locations. This problem is motivated by the operations of a feeder vessel 
service company with company-owned cargo terminals, which the shipping company wishes to coordinate the 
routing and the berthing time of the vessels. 
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1. Introduction 
We consider a ship routing problem that loading and unloading times of cargoes at pickup and drop-off locations are 
significant. At each pickup or drop-off location, we need to assign berthing time slots to each vessel to perform the 
loading and unloading tasks in order to prevent congestions at the locations. This problem is motivated by an 
application in ship routing and scheduling, where a shipping company runs a fleet of feeder vessels shuttling among 
various terminals in Hong Kong and Pearl River Delta. The company also owns several small terminals to 
load/unload the cargoes. Loading and unloading cargo containers at the terminals are time consuming, and without a 
proper planning of the ship arrival schedule, congestions are common that some vessels have to wait at sea for some 
time before they can get berthed. The company transports cargo containers from their origins to their destinations 
according to the customers’ orders via these vessels. Besides of loading and unloading containers at those small 
company-owned cargo terminals, some containers have to be loaded from or unloaded to the public container 
terminals, where advanced booking of the berthing time slot for the vessels is required. This advanced booking 
requirement complicates the ship routing and scheduling plan of the vessels, so that it is important for the company 
to take into consideration the assignment of berthing time slots at those loading/unloading areas in order to avoid 
congestion and waiting. 
 
In the past several decades, many research studies on ship routing and scheduling problems were presented in the 
literature. Almost in every decade since 1983, comprehensive surveys on the topic can be found in [1-4]. They have 
presented the ship scheduling problems and showed the differences between ship scheduling problems and other 
vehicle routing problems as follows: Each cargo ship has different capacity while truck capacities are generally 
homogenous; cargo ships operate around the clock, but trucks do not operate at night in most situations. Since cargo 
ships operate 24/7, they do not need to have a depot to return after serving all customers, but land-based vehicles do. 
These differences make ship scheduling problems more difficult to solve. Recently, Chen et al. [5] studied 
container-vessel scheduling with bi-directional flows of containers. Agarwal and Ergun [6] considered a integrated 
ship-scheduling and cargo-routing problem for liner shipping services. Boros et al. [7] studied the coordination of 
ship schedule and container yard operations for the determination of the optimal cycle time. Hwang et al. [8] 
presented a set-packing model to solve a ship scheduling problem with constraints on the profit variance. Pang et al. 
[9] considered a ship routing problem with time clash avoidance constraints at the pickup and drop-off points. 
Brønmo et al. [10] studied a ship scheduling problem with flexible cargo sizes.  Chuang et al. [11] proposed a fuzzy 
genetic algorithm for liner shipping planning. To the best of our knowledge, with the exception of [9], no study has 
been conducted on ship scheduling with berthing time assignment considerations. In [9], they presented a ship 
routing and berthing time assignment problem as a set partitioning problem, and used column generation approach 
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with dynamic programming algorithm to solve the subproblems as constrained shortest path problems. In fact, their 
proposed heuristic has limitation on the number of container batches that can be handled by each vessel when 
solving the constrained shortest path subproblems. In this paper, we follow the same set partitioning formulation, but 
we propose using constraint programming algorithm to solve the subproblem that does not have such limitation. 
That means a vessel can take as many container batches as possible, provided that it is economical and within the 
capacity limit of the vessel. This newly proposed approach fits the practical application in feeder vessel operations, 
where companies often prefer the vessels to take as many cargoes as possible in order to reduce the total operating 
cost.   
 
To tackle our problem, we first describe the model as proposed in [9]. Due to the model complexity, we propose a 
decomposition method to solve the problem heuristically, applying column generation techniques and constraint 
programming approaches. We will test the effectiveness of our heuristic via extensive computational experiments 
using randomly generated data. The rest of the paper is organized as follows: In Section 2, we describe the 
characteristics of the problem we study. We present our solution method in Section 3. Design of the computational 
experiments is presented in Section 4, followed by some concluding remarks and future work in Section 5. 
 
2. Problem description 
The problem we study can be formulated as a mixed integer linear programming (MILP) model as proposed in [9], 
which is similar to a multiple vehicles pickup and delivery problem that allows more than one vehicle visit a 
location so that the coordination of the arrival time of the vehicles at the locations is critical to avoid congestion. 
Details of the model formulation can be found in [9]. In brief, we have a set of vessels, and each with a capacity. 
Each vessel has a designated origin and destination. Apart from that, we have a set of containers waiting to be 
transported in batches. Each container batch has a given origin and a given destination. Each vessel is only allowed 
to perform a pickup or drop-off operation at a location within a specific time window. In addition, each pickup and 
drop-off location (i.e., a berth at the cargo terminal) can only serve one vessel at a time. A cargo terminal can be a 
company-owned cargo loading/unloading area or a public container terminal. For a berth of a company-owned 
terminal, the time window should be vessel-independent which represents the time period that the berth is in 
operation. However, for the berths of a public container terminal, it normally requires advanced booking of berthing 
time windows for a specific vessel, thus, the time window is vessel-dependent. In our model, we assume the vessels 
are allowed to wait at sea at no cost. We need to arrange the vessels to pick up the containers from their origins and 
transport them to their destinations with the planning horizon. Referring to the MILP formulation in [9], the problem 
is a generalization of the classical traveling salesman problem. Thus, the problem is NP-hard in the strong sense. In 
the next section, we present a decomposition method to solve the problem heuristically. 
 
3. Solution method 
In this paper, we follow the set partitioning problem formulation proposed in [9] to reformulate the problem of our 
study as  and solve it by column generation approach with constrained shortest path problem as the subproblem 

. We adopt the constraint programming approach to solve the subproblems  to generate new columns that enter 
to the set partitioning problem . We propose a different solution approach to solve the decomposed subproblems, 
which resolves the limitation in [9] on the number of container batches that can be handled by each vessel. The set 
partitioning formulation of our study is an extension of the model in [12] which is formulated as a multiple vehicles 
pickup and delivery problem with time window and capacity constraints. We extended the formulation with 
consideration of the berthing time clash avoidance constraint at the terminals. By iteratively solving problem  as a 
set partitioning problem and solving problem  to generate new columns for , we can obtain an optimal solution 
to the original problem. Given a feasible solution to the revised problem , a constrained shortest path subproblem 
is constructed to seek for new columns that enter to the problem . For each vessel , a route  is defined as a 
directed path which starts from the vessel origin  and ends at the vessel destination , and it takes care of a subset 
of the container batches by picking up the container batches at their origins and delivering them to their destinations. 
Throughout the route, the load must not exceed the vessel capacity . In addition, the vessel must perform its 
pickup and drop-off tasks within the given time windows. The detailed formulations of  and , as well as the 
description of the iterative method, are presented in the following subsections. 
 
3.1. The Set Partitioning Formulation 
We follow the same set partitioning formulation proposed in [9] to represent our ship routing and berthing time 
assignment problem with the following definitions: 



 
 = the set of all feasible pickup and delivery routes for vessel ; 

 = 
1,   if   is served on route 
0,   otherwise                                           

 

  = 
1,   if vessel   is at berth   at time   on route  
0,   otherwise                                                                         

 

 = the cost of route . 
 
We define a binary decision variable  for each vessel      and each route     . Variable  equals to 1 if 
route  is taken by vessel , and 0 otherwise. The ship routing and berthing time assignment problem can then be 
reformulated as follows: 
 

:  minimize   ∑ ∑                    (1) 
 subject to   ∑ ∑     1   (for all )        (2) 
      ∑     1     (for all )        (3) 
      ∑ ∑     1   (for all  and )        (4) 
      0 or 1      (for all  and all )     (5) 
  
Objective function (1) is to minimize the total travelling cost of the vessels. Constraints (2) ensure each container 
batch is taken care of by exactly once. Constraints (3) indicate that each vessel can travel only on one route. 
Constraints (4) ensure that each berth location  is berthed with at most one vessel at any time . In order to simplify 
the constraints (4) with time  as one dimension of the variable , the planning horizon defined as  is discretized 
into short period intervals. For instance, if we discretize the planning horizon  of one day into 5-minute intervals, a 
planning horizon interval of 1440 minutes equals to 1440/5 = 288 intervals. By discretizing the planning horizon 
into 5-minute intervals, it reduces the complexity of the set partitioning problem, and also reduces the space 
requirement for the memory to store the berthing time information in constraints (4) comparing to the case assuming 
the variable  is continuous. For each route in the solution, we check if each 5-minute time interval at berth location 

 is occupied by a vessel route in the current solution. Constraints (5) define the binary decision variables. 
 
The size of this set partitioning model is very large in general because of the huge number of possible vessel routes 
in the solution space, and it is impractical to generate all feasible routes so as to solve the problem optimally. Hence, 
we adopt a similar approach in [13] to iteratively generate new columns representing new admissible routes of a 
vessel that enter to the problem. We first relax the integer constraints (5) in order to obtain the values of the dual 
variables  ( ), ( ) and (for all  and all ) associated with constraints (2) – (4) respectively. 
Let  ,  denote this LP-relaxation problem. Given a feasible solution of , , together with the corresponding 
value of the dual variables  ,   and , a vehicle is selected, (i.e. ) and a new constrained shortest path 
subproblem with time-window and capacity constraints is constructed, and defined as . By solving the 
subproblem  for a vehicle , a new column is generated to enter the master problem  if a solution to the 
subproblem  with a negative solution value is detected; otherwise, we select another vessel to construct a new 
constrained shortest path subproblem. More new columns are generated in this manner by iterating between the 
problems ,  and  until an optimal solution is detected or until the stopping criteria are met. 
 
3.2. The Constrained Shortest Path Subproblem 
According to linear programming duality theory, problem ,  is optimal if and only if the reduced cost  is 
nonnegative for all  and all , where 
 
 ∑ ∑ ∑  (6) 
 
Hence, generating a new column for the master problem ,  is equivalent to determining that the following value 
is negative: 
  |  ,  
 
This is equivalent to determining that the following value is negative: 
 



  |   (7) 
 
Obtaining the value of min  |   in (7) is the same as constructing a feasible route for vessel  that 
minimizes the reduced cost  which can be defined as a constrained shortest path problem.  
 
We propose to adopt the constraint programming (CP) approach to solve the constrained shortest path subproblem 

 because CP formulation offers higher flexibility to include logic constraints that reflects the practical constraints, 
i.e. the constraints to ensure the vessel visits the drop off location if it has visited the pickup location of the container 
batch. With this constraint, the solution space is dynamically reduced during the search process by constraint 
propagation routine. Besides, we can easily introduce extra valid constraints in order to improve the performance by 
pruning and filtering, comparing with the fixed structure of the MILP formulation of the subproblem. Several 
research studies have been presented to show the suitability of using constraint programming approach to solve the 
constrained shortest path problems in vehicle routing related problems. Interested readers can refer to the references 
[14-16].  
 
We adopt a similar constraint programming formulation for the variable definition as proposed by [17] to model the 
constrained shortest path subproblem  of our study. We include additional constraints to penalize the vessels for 
visiting the same berth location at the same time, and add constraints to ensure the vessel visits the drop off location 
of a container batch if it has visited the batch’s pickup location. For a selected vessel , we solve this constrained 
shortest path subproblem, and a new column for the master problem ,  is generated once a feasible solution to 
the subproblem  with a negative objective value is detected. 
 
To formulate the constrained shortest path subproblem , let  denote the set of all vessels. The vessels have 
different capacities, denoted as , that travel at the same speed. Let  denote the set of all container batches. For 
simplicity, denote 1, 2,… , | | . We represent the pickup and drop-off locations of batch  by  and | | , 
respectively. We define  as the quantity of containers to be transported for each batch . We denote the origin of 
the vessel as location 0, and the destination of the vessel as location 2| | 1. We let  be the location set 
0, 1, 2, … , 2| | 1 ,  be the set of all pickup locations 1, 2,… , | | ,  be the set of all drop-off locations 
| | 1, | | 2, … , 2| | , and . We denote  as the cost for the vessel to travel from location  to 

location  (note: 0 if  and  belong to the same berth location; for example, if | | 10  and the pickup 
location of batch 4 is the same as the drop-off location of batch 3, then , 0). Next, we define the reduced cost 
for the vehicle to go from location  to location  as , where  equals to  obtained from the dual 
variable of constraints (2) in problem ,  if ,  equals 0 if ,  equals to  obtained from the dual 

variable of constraints (3) and | |  equals 0. We further define ∑  as the penalty cost for a vessel to 
occupy the berth  from time  to time  while the vessel is performing the loading or unloading operation of a 
container batch at the berth . The value of    can be obtained from the dual variable of constraints (4) in 
problem , . 
 
To formulate the constrained shortest path problem  for a vessel, we define the following parameters:  

̃  = service time (i.e., either loading or unloading) of the vessel at location  (note:  ̃   ̃ | | 0); 
̃  =  travel time of the vessel from location  to location ; 
̃  = earliest time that the vessel is allowed to occupy location ; 
 = latest time that the vessel is allowed to occupy location ; 
 =  = vessel capacity; 

 = “demand” at location 
,   if   is the pickup location of batch  ;
, if   is the dropoff location of batch  ;

0,   if  0 or 2| | 1                              
 

 
Define the following decision variables: 

\ 0  for all  \ 2| | 1   next visit location after the vessel visits location ;
 
 

̃ ,  for all        arrival time of the vessel at location ; 
̃ ,  for all       departure time of the vessel from location ; 

0,  for all       cumulative load of the vessel when it arrives at location . 



 
The constrained shortest path problem can be formulated as the following constraint programme: 

: minimize ∑ ∑ ∑:\ | |      (8) 

 subject to 
  AllDifferent   (9) 
  ̃  (for all ) (10) 

  ̃  (for all \ 2| | 1 ) (11) 

  | |  (for all i G ) (12) 

   (for all \ 2| | 1 ) (13) 

  | | | |  (for all i G ) (14) 
  

In this formulation, objective function (8) minimizes the total reduced cost of the vessel route. Constraint (9) ensures 
conservation of flow of every batch  at all pickup and drop-off locations. The AllDifferent  in constraint (9) 
ensures no two locations have the same immediate successor location as this constraint confines that there is only 
one outgoing arc from each location. By ensuring the values of the variable  of all locations are different, we can 
also restrict only one incoming arc connects to each location . For those locations not belong to the shortest path of 
the vessel, the value of the variable  will take the value of  automatically. Constraints (10) define the departure 
time of the vessel leaving from location , which is bounded by the time window in the variable definition. This 
constraint also forces the vessel to leave the current location  as soon as it finishes all the loading and unloading 
operations in order to minimize the penalty cost of occupying the berth. Constraints (11) ensure the vessel arrives at 
next location  no earlier than the departure time of the vessel at location  plus the travel time from location  to . 
This inequality constraint allows the vessel waits at the sea at no cost after it departs from the location  if the 
location  is currently not available to serve the vessel. This constraint can also be used to ensure no sub-tour in any 
solution to the constrained shortest path problem. Constraints (12) ensure the vessels visit the container batch’s 
pickup location before visiting the batch’s drop-off location. Constraints (13) indicate the cumulative load when the 
vessel arrives at location  equals to the cumulative load when the vessel arrives at location  plus the demand 
request at location . Constraints (14) specify that if the vessel visits a pickup location of a container batch, then it 
must also visit that batch’s drop-off location, and vice versa.  
 
The constrained shortest path problem can be solved by using ILOG Constraint Programming (CP) Optimizer, 
which is specifically designed to solve this kind of scheduling problem effectively. The CP Optimizer is 
incorporated with constraint propagation algorithm and neighborhood search heuristic. We do not use the CP 
Optimizer to solve the constrained shortest path subproblem optimally to generate new columns. It is because we 
need to solve many of these subproblems for the vessels during the solution search process. It is time consuming to 
solve the subproblem optimally for any reasonable size application. Also, we do not expect to solve the set 
partitioning problem ,  optimally, which is costly both in terms of computing time and memory space 
requirement. Another reason is even we obtain the optimal solution to the revised set partitioning problem , , we 
cannot guarantee the obtained solution is the optimal solution to the original problem  that takes only integer 
values on the decision variables. To balance the tradeoff between the solution quality and computing time 
requirement, we adopt the CP Optimizer to quickly generate new columns for the set partitioning problem by setting 
the computing time limit in each iteration.  
 
The iterative approach continues until the stopping criteria are met. In order to determine the stopping criteria, we 
will test different approaches and assess their suitability through extensive computational experiments. The 
proposed stopping criteria include the determination of the solution to the LP relaxed MILP formulation of the 
original problem as the theoretical lower bound, and compare with the solution obtained from our iterative approach. 
If the solution obtained is within certain percentage difference from the lower bound, the iteration will be stopped. 
Another stopping criterion is based on the total computing time for the iterative approach. The program will be 
stopped when the computing time reaches a pre-determined threshold. This total computing time is determined by 
the time available for the planning process in real application. Furthermore, the third criterion to stop the iteration is 
when there is no new column could be found when solving the constrained shortest path subproblem for all vessels 
within a computing time limit. We will also consider combining these stopping criteria together. 
 



4. Computational experiment design 
To conduct the experiment for the performance evaluation of the proposed algorithm, the major parameter 
settings follow that of real-life operations of the feeder vessel service company operates in Hong Kong. The required 
parameters include the planning horizon, loading and unloading time per container, travel speed of the vessels, 
location of the terminals and berths that determines the distance between the locations, and the capacity of the 
vessels. Other parameters that simulate different scale of company operations include the number of berths, number 
of vessels and number of container batches to be transported by the vessels. For these three parameters, three set of 
test cases will be randomly generated to represent a small, medium and large scale operations. For each type of the 
test cases, some random sample problems will be generated and the average solution values will be identified for 
performance comparison. Besides, the number of containers in each container batch will be randomly generated. 
The result obtained from the proposed iterative algorithm will be compared with other simple heuristics in order to 
justify the applicability and suitability of using the proposed approach to solve the real life ship routing and berthing 
time assignment problems. 
 
5. Conclusions 
This paper presents a constraint programming based column generation heuristic for an integrated model for ship 
routing and berth assignment problem, which is particularly useful for the decision making of the shipping 
companies that operate feeder vessels and company-owned terminals. An iterative approach is applied to solve the 
ship routing and berth assignment integrated problem heuristically. In future, extensive computational experiments 
will be conducted to show the performance of the proposed algorithm compare with some theoretical lower bounds. 
Based on the computational results, we will fine-tune the heuristic so as to improve its performance. Also, the 
proposed algorithm can be used as a backbone for the solution approach to solve the extended ship routing and berth 
assignment problem. It considers the option of transshipment that a container batch can first be loaded to a vessel, 
then transported and unloaded to a company-owned terminal, and later being picked up by another vessel again to 
further transport to its destination. This extension helps the feeder vessel service company to further improve their 
operation efficiency, better utilize the company-owned facilities and coordinate with the public terminal operators. 
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