185 research outputs found

    Mathematical properties of neuronal TD-rules and differential Hebbian learning: a comparison

    Get PDF
    A confusingly wide variety of temporally asymmetric learning rules exists related to reinforcement learning and/or to spike-timing dependent plasticity, many of which look exceedingly similar, while displaying strongly different behavior. These rules often find their use in control tasks, for example in robotics and for this rigorous convergence and numerical stability is required. The goal of this article is to review these rules and compare them to provide a better overview over their different properties. Two main classes will be discussed: temporal difference (TD) rules and correlation based (differential hebbian) rules and some transition cases. In general we will focus on neuronal implementations with changeable synaptic weights and a time-continuous representation of activity. In a machine learning (non-neuronal) context, for TD-learning a solid mathematical theory has existed since several years. This can partly be transfered to a neuronal framework, too. On the other hand, only now a more complete theory has also emerged for differential Hebb rules. In general rules differ by their convergence conditions and their numerical stability, which can lead to very undesirable behavior, when wanting to apply them. For TD, convergence can be enforced with a certain output condition assuring that the δ-error drops on average to zero (output control). Correlation based rules, on the other hand, converge when one input drops to zero (input control). Temporally asymmetric learning rules treat situations where incoming stimuli follow each other in time. Thus, it is necessary to remember the first stimulus to be able to relate it to the later occurring second one. To this end different types of so-called eligibility traces are being used by these two different types of rules. This aspect leads again to different properties of TD and differential Hebbian learning as discussed here. Thus, this paper, while also presenting several novel mathematical results, is mainly meant to provide a road map through the different neuronally emulated temporal asymmetrical learning rules and their behavior to provide some guidance for possible applications

    Evolving the theory and praxis of knowledge translation through social interaction: a social phenomenological study

    Get PDF
    Background: As an inherently human process fraught with subjectivity, dynamic interaction, and change, social interaction knowledge translation (KT) invites implementation scientists to explore what might be learned from adopting the academic tradition of social constructivism and an interpretive research approach. This paper presents phenomenological investigation of the second cycle of a participatory action KT intervention in the home care sector to answer the question: What is the nature of the process of implementing KT through social interaction? Methods: Social phenomenology was selected to capture how the social processes of the KT intervention were experienced, with the aim of representing these as typical socially-constituted patterns. Participants (n = 203), including service providers, case managers, administrators, and researchers organized into nine geographically-determined multi-disciplinary action groups, purposefully selected and audiotaped three meetings per group to capture their enactment of the KT process at early, middle, and end-of-cycle timeframes. Data, comprised of 36 hours of transcribed audiotapes augmented by researchers\u27 field notes, were analyzed using social phenomenology strategies and authenticated through member checking and peer review. Results: Four patterns of social interaction representing organization, team, and individual interests were identified: overcoming barriers and optimizing facilitators; integrating \u27science push\u27 and \u27demand pull\u27 approaches within the social interaction process; synthesizing the research evidence with tacit professional craft and experiential knowledge; and integrating knowledge creation, transfer, and uptake throughout everyday work. Achieved through relational transformative leadership constituted simultaneously by both structure and agency, in keeping with social phenomenology analysis approaches, these four patterns are represented holistically in a typical construction, specifically, a participatory action KT (PAKT) model. Conclusion: Study findings suggest the relevance of principles and foci from the field of process evaluation related to intervention implementation, further illuminating KT as a structuration process facilitated by evolving transformative leadership in an active and integrated context. The model provides guidance for proactively constructing a \u27fit\u27 between content, context, and facilitation in the translation of evidence informing professional craft knowledge

    Insufficiency of Janus Kinase 2–Autonomous Leptin Receptor Signals for Most Physiologic Leptin Actions

    Get PDF
    OBJECTIVE: Leptin acts via its receptor (LepRb) to signal the status of body energy stores. Leptin binding to LepRb initiates signaling by activating the associated Janus kinase 2 (Jak2) tyrosine kinase, which promotes the phosphorylation of tyrosine residues on the intracellular tail of LepRb. Two previously examined LepRb phosphorylation sites mediate several, but not all, aspects of leptin action, leading us to hypothesize that Jak2 signaling might contribute to leptin action independently of LepRb phosphorylation sites. We therefore determined the potential role in leptin action for signals that are activated by Jak2 independently of LepRb phosphorylation (Jak2-autonomous signals). RESEARCH DESIGN AND METHODS: We inserted sequences encoding a truncated LepRb mutant (LepRbΔ65c^{\Delta65c}, which activates Jak2 normally, but is devoid of other LepRb intracellular sequences) into the mouse Lepr locus. We examined the leptin-regulated physiology of the resulting Δ/Δ\Delta/\Delta mice relative to LepRb-deficient db/dbdb/db animals. RESULTS: The Δ/Δ\Delta/\Delta animals were similar to db/dbdb/db animals in terms of energy homeostasis, neuroendocrine and immune function, and regulation of the hypothalamic arcuate nucleus, but demonstrated modest improvements in glucose homeostasis. CONCLUSIONS: The ability of Jak2-autonomous LepRb signals to modulate glucose homeostasis in Δ/Δ\Delta/\Delta animals suggests a role for these signals in leptin action. Because Jak2-autonomous LepRb signals fail to mediate most leptin action, however, signals from other LepRb intracellular sequences predominate

    A wild derived quantitative trait locus on mouse chromosome 2 prevents obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic architecture of multifactorial traits such as obesity has been poorly understood. Quantitative trait locus (QTL) analysis is widely used to localize loci affecting multifactorial traits on chromosomal regions. However, large confidence intervals and small phenotypic effects of identified QTLs and closely linked loci are impeding the identification of causative genes that underlie the QTLs. Here we developed five subcongenic mouse strains with overlapping and non-overlapping wild-derived genomic regions from an F2 intercross of a previously developed congenic strain, B6.Cg-<it>Pbwg1</it>, and its genetic background strain, C57BL/6J (B6). The subcongenic strains developed were phenotyped on low-fat standard chow and a high-fat diet to fine-map a previously identified obesity QTL. Microarray analysis was performed with Affymetrix GeneChips to search for candidate genes of the QTL.</p> <p>Results</p> <p>The obesity QTL was physically mapped to an 8.8-Mb region of mouse chromosome 2. The wild-derived allele significantly decreased white fat pad weight, body weight and serum levels of glucose and triglyceride. It was also resistant to the high-fat diet. Among 29 genes residing within the 8.8-Mb region, <it>Gpd2, Upp2, Acvr1c, March7 </it>and <it>Rbms1 </it>showed great differential expression in livers and/or gonadal fat pads between B6.Cg-<it>Pbwg1 </it>and B6 mice.</p> <p>Conclusions</p> <p>The wild-derived QTL allele prevented obesity in both mice fed a low-fat standard diet and mice fed a high-fat diet. This finding will pave the way for identification of causative genes for obesity. A further understanding of this unique QTL effect at genetic and molecular levels may lead to the discovery of new biological and pathologic pathways associated with obesity.</p

    Administration of zoledronic acid enhances the effects of docetaxel on growth of prostate cancer in the bone environment

    Get PDF
    BACKGROUND: After development of hormone-refractory metastatic disease, prostate cancer is incurable. The recent history of chemotherapy has shown that with difficult disease targets, combinatorial therapy frequently offers the best chance of a cure. In this study we have examined the effects of a combination of zoledronic acid (ZOL), a new-generation bisphosphonate, and docetaxel on LuCaP 23.1, a prostate cancer xenograft that stimulates the osteoblastic reaction when grown in the bone environment. METHODS: Intra-tibial injections of LuCaP 23.1 cells were used to generate tumors in the bone environment, and animals were treated with ZOL, docetaxel, or a combination of these. Effects on bone and tumor were evaluated by measurements of bone mineral density and histomorphometrical analysis. RESULTS: ZOL decreased proliferation of LuCaP 23.1 in the bone environment, while docetaxel at a dose that effectively inhibited growth of subcutaneous tumors did not show any effects in the bone environment. The combination of the drugs significantly inhibited the growth of LuCaP 23.1 tumors in the bone. CONCLUSION: In conclusion, the use of the osteolysis-inhibitory agent ZOL in combination with docetaxel inhibits growth of prostate tumors in bone and represents a potential treatment option

    Biosignals reflect pair-dynamics in collaborative work : EDA and ECG study of pair-programming in a classroom environment

    Get PDF
    Collaboration is a complex phenomenon, where intersubjective dynamics can greatly affect the productive outcome. Evaluation of collaboration is thus of great interest, and can potentially help achieve better outcomes and performance. However, quantitative measurement of collaboration is difficult, because much of the interaction occurs in the intersubjective space between collaborators. Manual observation and/or self-reports are subjective, laborious, and have a poor temporal resolution. The problem is compounded in natural settings where task-activity and response-compliance cannot be controlled. Physiological signals provide an objective mean to quantify intersubjective rapport (as synchrony), but require novel methods to support broad deployment outside the lab. We studied 28 student dyads during a self-directed classroom pair-programming exercise. Sympathetic and parasympathetic nervous system activation was measured during task performance using electrodermal activity and electrocardiography. Results suggest that (a) we can isolate cognitive processes (mental workload) from confounding environmental effects, and (b) electrodermal signals show role-specific but correlated affective response profiles. We demonstrate the potential for social physiological compliance to quantify pair-work in natural settings, with no experimental manipulation of participants required. Our objective approach has a high temporal resolution, is scalable, non-intrusive, and robust.Peer reviewe

    Imbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder

    Get PDF
    Literatures have shown that Internet gaming disorder (IGD) subjects show impaired executive control and enhanced reward sensitivities than healthy controls. However, how these two networks jointly affect the valuation process and drive IGD subjects' online-game-seeking behaviors remains unknown. Thirty-five IGD and 36 healthy controls underwent a resting-states scan in the MRI scanner. Functional connectivity (FC) was examined within control and reward network seeds regions, respectively. Nucleus accumbens (NAcc) was selected as the node to find the interactions between these two networks. IGD subjects show decreased FC in the executive control network and increased FC in the reward network when comparing with the healthy controls. When examining the correlations between the NAcc and the executive control/reward networks, the link between the NAcc - executive control network is negatively related with the link between NAcc - reward network. The changes (decrease/increase) in IGD subjects' brain synchrony in control/reward networks suggest the inefficient/overly processing within neural circuitry underlying these processes. The inverse proportion between control network and reward network in IGD suggest that impairments in executive control lead to inefficient inhibition of enhanced cravings to excessive online game playing. This might shed light on the mechanistic understanding of IGD

    Hyperleptinemia Is Required for the Development of Leptin Resistance

    Get PDF
    Leptin regulates body weight by signaling to the brain the availability of energy stored as fat. This negative feedback loop becomes disrupted in most obese individuals, resulting in a state known as leptin resistance. The physiological causes of leptin resistance remain poorly understood. Here we test the hypothesis that hyperleptinemia is required for the development of leptin resistance in diet-induced obese mice. We show that mice whose plasma leptin has been clamped to lean levels develop obesity in response to a high-fat diet, and the magnitude of this obesity is indistinguishable from wild-type controls. Yet these obese animals with constant low levels of plasma leptin remain highly sensitive to exogenous leptin even after long-term exposure to a high fat diet. This shows that dietary fats alone are insufficient to block the response to leptin. The data also suggest that hyperleptinemia itself can contribute to leptin resistance by downregulating cellular response to leptin as has been shown for other hormones

    Effects of perceived cocaine availability on subjective and objective responses to the drug

    Get PDF
    <p>Abstract</p> <p>Rationale</p> <p>Several lines of evidence suggest that cocaine expectancy and craving are two related phenomena. The present study assessed this potential link by contrasting reactions to varying degrees of the drug's perceived availability.</p> <p>Method</p> <p>Non-treatment seeking individuals with cocaine dependence were administered an intravenous bolus of cocaine (0.2 mg/kg) under 100% ('unblinded'; N = 33) and 33% ('blinded'; N = 12) probability conditions for the delivery of drug. Subjective ratings of craving, high, rush and low along with heart rate and blood pressure measurements were collected at baseline and every minute for 20 minutes following the infusions.</p> <p>Results</p> <p>Compared to the 'blinded' subjects, their 'unblinded' counterparts had similar craving scores on a multidimensional assessment several hours before the infusion, but reported higher craving levels on a more proximal evaluation, immediately prior to the receipt of cocaine. Furthermore, the 'unblinded' subjects displayed a more rapid onset of high and rush cocaine responses along with significantly higher cocaine-induced heart rate elevations.</p> <p>Conclusion</p> <p>These results support the hypothesis that cocaine expectancy modulates subjective and objective responses to the drug. Provided the important public health policy implications of heavy cocaine use, health policy makers and clinicians alike may favor cocaine craving assessments performed in the settings with access to the drug rather than in more neutral environments as a more meaningful marker of disease staging and assignment to the proper level of care.</p
    corecore