101 research outputs found

    In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli

    Get PDF
    Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451–739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451–739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro

    Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intracerebral hemorrhage (ICH) remains a serious clinical problem lacking effective treatment. Urocortin (UCN), a novel anti-inflammatory neuropeptide, protects injured cardiomyocytes and dopaminergic neurons. Our preliminary studies indicate UCN alleviates ICH-induced brain injury when administered intracerebroventricularly (ICV). The present study examines the therapeutic effect of UCN on ICH-induced neurological deficits and neuroinflammation when administered by the more convenient intraperitoneal (i.p.) route.</p> <p>Methods</p> <p>ICH was induced in male Sprague-Dawley rats by intrastriatal infusion of bacterial collagenase VII-S or autologous blood. UCN (2.5 or 25 μg/kg) was administered i.p. at 60 minutes post-ICH. Penetration of i.p. administered fluorescently labeled UCN into the striatum was examined by fluorescence microscopy. Neurological deficits were evaluated by modified neurological severity score (mNSS). Brain edema was assessed using the dry/wet method. Blood-brain barrier (BBB) disruption was assessed using the Evans blue assay. Hemorrhagic volume and lesion volume were assessed by Drabkin's method and morphometric assay, respectively. Pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) expression was evaluated by enzyme-linked immunosorbent assay (ELISA). Microglial activation and neuronal loss were evaluated by immunohistochemistry.</p> <p>Results</p> <p>Administration of UCN reduced neurological deficits from 1 to 7 days post-ICH. Surprisingly, although a higher dose (25 μg/kg, i.p.) also reduced the functional deficits associated with ICH, it is significantly less effective than the lower dose (2.5 μg/kg, i.p.). Beneficial results with the low dose of UCN included a reduction in neurological deficits from 1 to 7 days post-ICH, as well as a reduction in brain edema, BBB disruption, lesion volume, microglial activation and neuronal loss 3 days post-ICH, and suppression of TNF-α, IL-1β, and IL-6 production 1, 3 and 7 days post-ICH.</p> <p>Conclusion</p> <p>Systemic post-ICH treatment with UCN reduces striatal injury and neurological deficits, likely via suppression of microglial activation and inflammatory cytokine production. The low dose of UCN necessary and the clinically amenable peripheral route make UCN a potential candidate for development into a clinical treatment regimen.</p

    Age-Related Comparisons of Evolution of the Inflammatory Response After Intracerebral Hemorrhage in Rats

    Get PDF
    In the hours to days after intracerebral hemorrhage (ICH), there is an inflammatory response within the brain characterized by the infiltration of peripheral neutrophils and macrophages and the activation of brain-resident microglia and astrocytes. Despite the strong correlation of aging and ICH incidence, and increasing information about cellular responses, little is known about the temporal- and age-related molecular responses of the brain after ICH. Here, we monitored a panel of 27 genes at 6 h and 1, 3, and 7 days after ICH was induced by injecting collagenase into the striatum of young adult and aged rats. Several molecules (CR3, TLR2, TLR4, IL-1β, TNFα, iNOS, IL-6) were selected to reflect the classical activation of innate immune cells (macrophages, microglia) and the potential to exacerbate inflammation and damage brain cells. Most of the others are associated with the resolution of innate inflammation, alternative pathways of macrophage/microglial activation, and the repair phase after acute injury (TGFβ, IL-1ra, IL-1r2, IL-4, IL-13, IL-4Rα, IL-13Rα1, IL-13Rα2, MRC1, ARG1, CD163, CCL22). In young animals, the up-regulation of 26 in 27 genes (not IL-4) was detected within the first week. Differences in timing or levels between young and aged animals were detected for 18 of 27 genes examined (TLR2, GFAP, IL-1β, IL-1ra, IL-1r2, iNOS, IL-6, TGFβ, MMP9, MMP12, IL-13, IL-4Rα, IL-13Rα1, IL-13Rα2, MRC1, ARG1, CD163, CCL22), with a generally less pronounced or delayed inflammatory response in the aged animals. Importantly, within this complex response to experimental ICH, the induction of pro-inflammatory, potentially harmful mediators often coincided with resolving and beneficial molecules

    Restoring brain function after stroke - bridging the gap between animals and humans

    Get PDF
    Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke
    corecore