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Infrared optical imaging of matrix
metalloproteinases (MMPs) up regulation
following ischemia reperfusion is ameliorated
by hypothermia
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Abstract

Background: We investigated the use of a new MMP activatable probe MMPSense” 750 FAST (MMPSense750) for
in-vivo visualization of early MMP activity in ischemic stroke. Following middle cerebral artery occlusion (MCAQ)
optical imaging was performed. Near-infrared (NIR) fluorescent images of MMPSense activation were acquired using
an Olympus fluorescent microscope, 1.25x objective, a CCD camera and an appropriate filter cube for detecting the
activated probe with peak excitation and emission at 749 and 775 nm, respectively. Images were acquired starting
at 2 or 24 hours after reperfusion over the ipsilateral and contralateral cortex before and for 3 hours after,
MMPSense750 was injected.

Results: Increased intensities ipsilaterally were observed following MMPSense750 injection with ischemic injury but
not in sham animals. There were significant ipsilateral and contralateral differences at 15 minutes (P <0.05) in early
ischemic reperfusion and at time 0 in 24 hours post ischemia (P <0.05) which persisted at 180 minutes in both
these groups (P <0.01), but not following sham surgery. The increase in ipsilateral signal intensity was attenuated
by hypothermia. These observations corresponded with a significant increase in the total MMP-9 protein levels, 5
and 24 hours following ischemia reperfusion (P <0.05) and their reduction by hypothermia.

Conclusions: Matrix-metalloproteinase upregulation in ischemia reperfusion can be imaged acutely in-vivo with
NIRF using MMPSense750. Hypothermia attenuated both the optical increase in intensity after MMPSense750 and
the increase in MMP-9 protein expression supporting the proof of concept that NIRF imaging using MMPSense can
be used to assess potential therapeutic strategies for stroke treatment.

Background

Stroke is the third leading cause of death and the leading
cause of long-term disability in adults. Several members
of the matrix metalloproteinase (MMPs) family have
been implicated to have detrimental roles in stroke [1,2].
Specifically, the gelatinases MMP-2 and MMP-9 have
previously been considered to specifically injure the im-
portant components of the basal lamina around the
cerebral blood vessels that precede microvascular
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damage in cerebral ischemia [1]. This leads to disruption
of the blood brain barrier, edema, and hemorrhagic
transformation in animal models of ischemia [3,4]. Once
within the CNS, MMPs continue to damage CNS tissue.
In general higher MMP-9 levels are shown to correlate
significantly with larger infarct volume, severity of
stroke, reduced survival of neurons and worse functional
outcome [5], and therefore, seem an appropriate target
for a robust neuroprotectant such as hypothermia [6,7].
Most current studies investigating cerebral ischemia
and stroke detect MMPs in vitro using techniques such
as Western Blotting [8], ELISA [9] RT-PCR or staining
with anti-MMP antibodies [10]. While these are good
techniques they fall short when reporting accurate levels
of the active form of MMP, are limited in their
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sensitivities of MMP detection, and may not be a precise
depiction of MMP activity in vivo. In vivo visualization
of MMP activity would provide important information
regarding the spatial and temporal expression of MMP
enzymatic activity with respect to the pathophysiology of
the disease and to monitor response to interventions,
such as therapeutic hypothermia.

NIRF emitting probes offer the advantage of increased
depth of detection. Recently probes that fluoresce upon
proteolytic cleavage by MMP’s have become available
with the potential advantage of exhibiting low back-
ground fluorescence. One such probe, MMPSense680
(Perkin Elmer Inc (previously VisEn Medical), Boston,
MA USA) with a peak excitation at approx 680 nm and
emission at 700 nm, was shown to produce increased
fluorescent signal considered related to MMP mediated
cleavage in diseases including stroke [11,12]. Activation
of the probe is reported to occur by a broad range of
MMP’s including MMP 2, 3, 9, and 13 [11]and the
manufacturer recommends imaging at 24 hr following
administration.

The objective of the present study was to determine
whether an alternate MMP activatable probe with a
shorter optical imaging time, MMPSense 750 FAST
(MMPSense750), could be used for visualization of
MMP activity in the early stages of ischemia reperfusion
in a mouse model of stroke. This probe also has fluores-
cent properties in the near infrared range (peak excita-
tion and emission at approx 749 nm and 775 nm,
respectively) and according to the manufacturer is sensi-
tive to cleavage and optical activation by various MMP’s
including MMP2,3,7,9,12 and MMP13. In order to in-
vestigate the responsiveness of the probe to alterations
in MMP activity, the current study also examined
whether the MMPSense750 probe would detect reduc-
tions in MMP’s associated with a therapeutic interven-
tion following stroke We chose mild hypothermia for its
well documented therapeutic reductions in various
MMPs in a number of neurological diseases including
stroke [13-16]. In parallel with in vivo studies, character-
istics of the probe were investigated in vitro.

Methods

Optical activation of MMPSense750 in vitro

To test the optical changes in MMPSense750 (Elmer
Perkin Inc, Boston MA, USA) in vitro, we investigated
fluorescent intensity changes following its addition to
several different test solutions. The test solutions con-
sisted of blood (from an animal 2 hours following
MCAO plus reperfusion), phosphate buffer (PBS), and
PBS with an enzyme (tryspin, 1 mg/ml) that would
cleave and activate the optical probe. The test solution
(95ul) was added to a 96 well plate and a zero reading
was taken. Then 5ul of MMPSense750, was added to the
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wells and shaken. Near-Infrared Images were acquired
repeatedly over 30 minutes from which intensity changes
were measured. In control experiments, PBS was added
instead of MMPSense750. Experiments were repeated in
duplicate or triplicate. .

Near infrared fluorescent imaging

Near-Infrared images were acquired using a 1.25x ob-
jective (PLAN-APO) on an Olympus BX51 fluorescent
microscope fitted with a back thinned CCD camera (Q-
imaging Rolera) and an Olympus Cy7-B-OMF-ZERO fil-
ter cube with excitation/emission bands of 665-750 nm
and 765 to 855 nm, respectively. Digital images (14 bit
monochromatic) were acquired with a temporal reso-
lution of 4 sec and a pixel size of 12.6 pumx12.6 pm
(512 x 512 pixels). Emission intensity was measured as
mean gray levels in regions of interest using Image-]
software (Research Services Branch, National Institute of
Mental Health, Bethesda, Maryland, USA).

In vivo experiments

Male C57Bl/6 mice (3 months old, 25 to 35 g; Charles
River Breeding Laboratories, Ontario, Canada) were pre-
pared for transient MCAO using the intraluminal fila-
ment method [17]. A total of forty-six animals were
included in the study. Of these 25 were dedicated for op-
tical imaging and 21 for quantification of MMP protein
expression with ELISA. The animal groups were SHAM
(N =13), early ischemia reperfusion (N = 14), early ische-
mia reperfusion with the induction of hypothermia (33 °
C) (N=8), and ischemia reperfusion at 24 hours
(N'=11). All experiments and procedures were approved
by the local University of Calgary and National Research
Council animal care committees and were in accordance
with the Canadian Council of Animal Care guidelines.

Transient focal ischemia

Anesthesia was induced with isoflurane (3% initial, 1% to
1.5% maintenance) in O, and air (80%:20%). Briefly,
under the operating microscope, the left common ca-
rotid artery (CCA), the left external carotid artery
(ECA), and the left internal carotid artery (ICA) were
isolated and a 6—0 suture was tied at the origin of the
ECA and at the distal end of the ECA. The left CCA and
ICA were temporarily occluded. The silicon-coated
nylon suture (diameter 180-220 pm) was introduced into
the ECA and inserted into the ICA approximately 9 to
10 mm from the carotid bifurcation until meeting resist-
ance and effectively blocking the middle cerebral artery.
The suture remained inserted for 30 minutes, after
which it was removed and the ECA was permanently
tied.
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Measurement of cerebral blood flow

Transcranial measurements of cerebral blood flow (CBF)
were made by laser-Doppler flowmetry (LDF) while the
animal was under general anesthesia (Perisoft Version 1.3;
Perimed Inc). A 0.5-mm diameter microfiber laser-
Doppler probe (Probe 418; Perimed) was attached to the
skull with cyanoacrylate glue 6 mm lateral and 1 mm pos-
terior of bregma. Data were expressed as a mean percent-
age of the baseline pre-ischemia value. The occlusion was
considered adequate if >70% reduction in cortical CBF oc-
curred immediately after placement of the intraluminal
occluding suture; otherwise, mice were excluded.

Temperature regulation

Mice were implanted with intra-abdominal radiofrequency
probes (TA10TA-F20; Transoma Medical) 7 days before
MCA occlusion. Core temperature was sampled every 30
seconds using receivers Activity and temperature data was
collected every 30 seconds during movement of the ani-
mal over the receiver (RLA-1020; Data Sciences Int.)
interfaced to a computer running ART 2.2. During the
surgical procedure, the animals were regulated at 36.5 °C
(total time 2 hours) by a 125-W heating lamp.

Intravital fluorescence measurements

Ninety minutes or 24 hours post-reperfusion, a lateral
tail vein was cannulated for intravenous infusion of
MMPSense750. Core body temperature was continu-
ously monitored and maintained using a rectal probe
with feedback to a heating lamp for the duration of the
experiment at 36.5 °C for normothermia or 33.5 °C for
hypothermia (started at the onset of reperfusion and
maintained for the duration of the experiment). Because
initial experiments had difficulty imaging MMPSense
750 through the skull we created a window using a high-
speed micro-drill and saline cooling to expose the left
parietal bone between the lambdoidal suture, sagittal su-
ture and coronal suture. A control window was made on
the contralateral side.

Animals were placed on a custom designed heated
platform attached to the stage of the Olympus BX51
microscope. One hundred and twenty minutes after
reperfusion, animals were imaged over ipsilateral and
contralateral parietal cortex to obtain baseline back-
ground measures and then 150 ul MMPSense750 was
infused over 60 seconds. Optical imaging data was then
acquired every 5-10 minutes over 3 hours. At 3 hours
animals were euthanized and the entire brain was
removed and imaged ex-vivo using a FITC filter cube
(maximal excitation and emission of 490 and 520 nm,
respectively) instead of the NIR filter cube. Endogenous
blue/green fluorescence was increased in the ischemic
hemisphere and this fluorescence was considered related
to increased levels of mitochondrial coenzymes (e.g.
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NADH and NADPH) [18] produced within the ischemic
lesion[19] thereby providing an estimate of the extent of
the stroke. Brains were dissected and prepared for hist-
ology or ELISA assay of MMP-9 and 2.

ELISA assay

Brains were cut into thick axial sections in PBS at 4 °C.
Stroke lesion was identified by the endogenous region
of autofluorescence with FITC imaging and a sample
was dissected along with an equivalent sample in the
contralateral region. Tissue was homogenized in radio-
immunoprecipitation assay (RIPA) buffer with Ethylene-
diaminetetraacetic acid (EDTA)-free protease inhibitors
(Roche) by sonication for 2 minutes on ice. Homoge-
nates were centrifuged (1000 G, 5 mins) and superna-
tants collected for analysis. ELISA kits were used
according to the manufacturer’s instructions for meas-
urement of murine total and pro- murine MMP-9,
(Quantikine ELISA Kits,R & D systems) and murine
MMP-2 (Abnova). Supernatants were assayed for pro-
tein concentration (Pierce, BCA assay kit) and results
were expressed as ng MMP per mg total protein.

Histology

Animals were euthanized with sodium pentobarbital
(70 mg/kg intraperitoneally) and transcardially perfused
with 0.9% saline, followed by 4% paraformaldehyde. The
brain was then embedded in paraffin and sections were
cut at 6 um thickness and stained with hematoxylin and
eosin. The distance between sections was ~ 1 mm. Paraf-
fin sections were de-waxed in xylene and rehydrated.
Antigen retrieval was performed by boiling sections in
citrate buffer for 2 minutes. Sections were then washed
in PBS (0.01 M), Triton X100(1%) for 10 minutes followed
by 2 subsequent washes in PBS(0.01 M) for 5mins. Nor-
mal goat serum (10%)/PBS(0.01 M) was then applied to
the sections for 30 minutes at room temperature to block
non-specific binding. Primary antibody (MAB305, Milli-
pore) Rabbit anti MMP-9 n-terminal was diluted 1/200
in PBS (0.01 M)/BSA 1% and applied to sections and
then incubated at 4 °C overnight. Sections were washed 3
times in PBS (0.01 M) for 5mins. Goat anti-rabbit TRITC
secondary antibody diluted 1/1000 in PBS was then ap-
plied to the sections and incubated for 2 hours at room
temperature. Sections were then washed at 3 x 10 min-
utes in PBS (0.01 M) and mounted with DAKO hardset
fluorescent mounting media. Positive fluorescent staining
was captured using an Olympus BX61 microscope (ob-
jective x2) and Microfire Optronics digital camera.

Statistics

The data are presented as mean +S.D., and were ana-
lyzed using a One way repeated measures Analysis of
Variance (ANOVA), non parametric Dunnet post test
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Figure 1 Effect of MMPSense750 cleavage in vitro. Addition of

5 pul MMPSense750 to 95 pl blood from animals following stroke

produced no significant additional increase in intensity when

compared to its addition to a control solution of phosphate buffer-

(PBS). In contrast, the addition of MMPSense750 to a solution of

45 ul PBS + 50 pl trypsin resulted in a marked increase in fluorescent

intensity (P <0.001, 2 way ANOVA).

and Kruskal Wallis ANOVA for Ranks for left right
comparison of continuous data. Differences were consid-
ered significant at p <0.05.
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Results

MMPSense750 has a significant baseline signal and is
unaffected by blood from stroke animals examined

in vitro

The addition of MMPSense750 to a sample of PBS
resulted in an immediate increase in the NIR fluorescent
intensity detected indicating that the optical solution
contains unconjugated probe that is optically active and
provides a background level of grey scale fluorescence
intensity (Figure 1). The addition of MMPSense750 to
blood from stroke animals did not result in a substantial
additional increase in gray scale intensity relative to PBS
suggesting that there is little activation of the probe fol-
lowing the administration of blood (Figure 1). The
addition of 5 pl PBS instead of MMPSense750 to blood
did not result in a significant change in intensity (data
not shown). However, the addition of MMPSense750 to
45 ul PBS +50 pl trypsin resulted in a marked increase
in fluorescent signal indicative of optical activation of
the probe by proteolytic cleavage with trypsin.

MMPSense750 is activated in early ischemia reperfusion

The cortical CBF change in all animals successfully
reached the set threshold (>70% decrease from base-
line). The mean LDF reduction for each group was: early
ischemia reperfusion 2HR (84%,SD 3.6), early ischemia
reperfusion with the induction of hypothermia (33°C)

30 A

Sham

H Inject MMPSense 750FAST

~N

3B Acute Stroke
25
20
Inject MMPSense 7T50FAST
15
l *
10

Acute Stroke + Hypothermia

Inject MMPSense 750FAST

Intensity (Ipsilateral-Contralateral)%

-5 0 15 30 60 90 120 150 180

-5 0 15 30 60 90 120 150 180
30 D

Subacute (24h) Stroke

20 Inject MMPSense 750FAST

-5 0 15 30 60 90 120 150

180
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Time post MMPSense 750FAST(min)

Figure 2 MMPSense750 activation at acute (2 hour) and subacute (24 hour) time points after reperfusion from MCAO. MMPSense750
injection in sham animals (A) resulted in no significant ipsilateral versus contralateral differences in fluorescent intensity whereas with acute
MCAQO reperfusion (B), there were significant differences in fluorescent intensity by 30 minutes (P <0.05) post injection that persisted until 180
minutes. At 24 hours post ischemia there were immediate ipsilateral-contralateral differences following probe injection that persisted for all the
times examined. The increase in ipsilateral signal intensity was attenuated by hypothermia (D). * P <0.05, ** p <0.01 comparison to pre-injection
value (One way repeated measures ANOVA, non parametric Dunnet post test).
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(81%, SD2.8), and ischemia reperfusion at 24 hours
(93%,SD5.9). There was no statistical difference between
animal groups (P =0.33).

Two hours after the onset of reperfusion post ische-
mia, administration of MMPSense750 resulted in an in-
crease of NIR fluorescent intensity (Figure 2.B P <0.05)
levels at 30—180 minutes following injection not seen in
sham controls (Figure 2A). Acute stroke combined with
hypothermia reduced MMPSense750NIR intensity levels
(Figure 2C). The optical intensity increase persisted up
to the final recording at 5 hours of ischemia reperfusion.
Similar results were observed following injection of
MMPSense750 at 24 hour stroke, the difference being
that the initial rate of change and maximal optical inten-
sity occurred earlier within minutes of administering the
MMPSense 750 (Figure 2D) indicative of the presence of
substantial quantities of MMPs/proteases in the cortex
resulting in an abrupt activation of the MMPSense750
rather than a steady rise in MMPs or intensity at the
acute time point (Figure 2 B). No statistical difference in
optical intensity between the left and right hemisphere

was seen in sham operated animals or in animals with
hypothermia induced immediately after 30 minutes of
MCAO (Figure 2 A,C).

MMP-9 protein is predominately upregulated in early
ischemia reperfusion and at 24 hours

Quantification of total MMP-9 protein from brain
homogenates using ELISA revealed a predominant in-
crease in MMP-9 levels at 5 and 24 hours post ischemia
reperfusion (Figure 3), with higher MMP-9 levels
detected in the stroke hemisphere during a subacute
stroke versus and acute stroke (Figure 3). This increase
in MMP-9 levels in acute stroke were found to be atte-
nuated by hypothermia (P <0.05) (Figure 3). Changes in
MMP-2 protein expression were not detected at either
time point (Figure 3). This increase in MMP-9 was con-
firmed with positive immunofluoresence staining for
MMP-9 within the ipsilateral stroke hemisphere and
corresponding reductions of such staining with
hypothermia (Figure 4). Changes corresponding to these
altered MMP-9 levels were visualized in vivo using NIR
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Figure 4 Fluorescent images of representative brains following injection with MMPSense750. Autofluorescence seen in the FITC channel
(left hand column) is considered to indicate increased coenzyme levels such as NADH revealing the location of the stroke. A localized increase in
intensity using the NIR channel (mid column) is observed following injection of MMPSense750, both acutely and subacutely following stroke but
less appreciably in sham and hypothermia treated animals. These near infrared intensity changes correspond to MMP9 increases in
immunohistochemical staining of coronal frozen sections shown from representative animals (right hand column).

NIR FILTER MMP9 [HC

fluorescence imaging of the activated MMPSense750 in
the stroke region (Figure 4) compared to sham controls.
In animals maintained hypothermic for 5 hours follow-
ing stroke, there was an attenuation of the activated
fluorescent signal intensity (Figure 4).

Discussion

This study reports a novel early up-regulation of MMP-
9 in ischemic reperfusion. The acute in-vivo detection
of MMP upregulation following ischemic stroke has not
been reported previously. Importantly, we describe an
innovative technique by which the increase in MMP-9
levels can be imaged in-situ within the first few hours
of ischemia reperfusion using NIR fluorescent imaging
and an activatable optical probe MMPSense750. Fur-
thermore, we demonstrate that hypothermia attenuates
the optical intensity increase in MMPSense750 and the
increase in MMP-9 protein expression among the broad
range of MMP’s potentially detected by MMPSense750,
(eg. MMP 2, 3, 7, 9, 12, and 13). Our data provides
evidence that MMPSense750 can detect activity of
MMPs in-vivo and taken together our findings support

the proof of concept that NIR fluorescent imaging can
be used in situ to assess the mechanisms involved in
cerebral ischemia.

The expression of MMP-9 corresponded well with
the spatial and temporal activation of MMPSense750.
The time dependent activities of MMPs have been pre-
viously well documented [20,21]. Of the two MMPs - 9
and 2 that are consistently reported to be up-regulated
in ischemic stroke, we found MMP-9 to be the most
strongly expressed in early ischemia reperfusion and
later at 24 hours post reperfusion. The increased activ-
ity of the MMPSense750 sense probe was evident re-
gionally and temporally in both the infarct and peri-
infarct regions when compared with the regions of en-
dogenous FITC fluorescence considered to represent
areas of predominantly increased NADH within the is-
chemic lesion [18,19]. The early increase in NIR optical
intensity would suggest that MMPSense750 is being
activated by increased MMP activity either at the intra-
luminal surface by activated leukocytes or at the basal
lamina [16]. It is important to note that when using this
probe it is necessary to control for presence of
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unconjugated probe and potential systemic activation of
the probe in vivo, because when we added
MMPSense750 to PBS fluorescent intensity immediately
increased and MMPSense750 administered to sham
operated mice produced immediate low level near infra-
red fluorescence intensity increases equally distributed
over both hemispheres.

Non invasive imaging of MMP activity remains a clin-
ically important unmet need. In a recent exploratory
study, a NIR fluorescent probe with excitation emission
in the 680 nm wavelength range was used to detect
MMP activity in an animal model of stroke using NIRF
imaging accompanied by magnetic resonance and radio-
isotope imaging techniques [12]. In this study, the utility
of this 680 nm probe was investigated only at 24 hours
after ischemia. For optimal clinical application, it is im-
portant to have an activatable probe that can also detect
early MMP upregulation following cerebral ischemia and
the present results demonstrate MMPSense750 can de-
tect earlier acute changes in MMP/protease activity.

There were recognized limitations of our study. We
used gelatin zymography to detect MMP-2 and 9 in brain
tissues, and the levels of these MMPs were too low to be
detected by this technique suggesting the importance of
our imaging method, which is sensitive enough to detect
low levels of MMP activity. The fact that we were not able
to detect large quantities of pro-MMP-9 would suggest
that the optical changes measured included activated
MMP-9. Clearly also possible is that other MMP’s contrib-
uted to the MMPSense intensity increases observed. Fur-
thermore, our observation that trypsin activates
MMPSense750 in vitro supports the conclusion that this
probes activation can be induced by other proteases such
as serine proteases in addition to MMPs. Another limita-
tion was our inability to readily image NIR fluorescent
changes though the skull. Non invasive detection is theor-
etically possible with NIR probes but considering the
small magnitude of the changes observed we believe this
would need substantial technical improvements with
advances in non-invasive imaging systems and probe sen-
sitivity. In addition to the small changes in signal intensity,
the need for background correction for this particular
probe may limit its clinical applicability.

A novel component of this study was the in vivo dem-
onstration that moderate hypothermia induced after is-
chemia reperfusion reduced both the NIR optical signal
intensity and also the level of MMP-9 protein detected.
Previous studies from MMP gene knockout mice and
those using MMP pharmacological inhibitors suggest
that the MMPs may be attractive therapeutic targets for
stroke [22-24]. It has been demonstrated that moderate
hypothermia (32-34°C) protects the basal lamina,
reduces infarct volume and hemorrhage, and reduces
MMP-9 [25,26]. However, emerging data now also
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suggests that some aspects of MMP activity during the
delay of neuroinflammatory response may contribute to
re-modeling in stroke recovery [27]. Therefore, defining
the time dependent relationship of MMP activation has
been increasingly emphasized and timing of therapeutic
strategies require detailed refinement to avoid the poten-
tial theoretical deleterious effects of MMP inhibition
on stroke remodeling. In this capacity the use of experi-
mental tools such as near NIR fluorescent probes and
NIR imaging may become invaluable both in pre clinical
and clinical testing.

Conclusions

This study shows that matrix-metalloproteinase upregu-
lation in ischemia reperfusion can be imaged acutely in-
vivo with NIRF using MMPSense750. Hypothermia atte-
nuated both the optical increase in intensity after
MMPSense750 and the increase in MMP-9 protein ex-
pression supporting the proof of concept that NIRF im-
aging using MMPSense can be used to assess potential
therapeutic strategies for stroke treatment.
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