5 research outputs found

    Interspecific introgression mediates adaptation to whole genome duplication

    Get PDF
    Adaptive gene flow is a consequential phenomenon across all kingdoms. While recognition is increasing, examples lack of bidirectional gene flow mediating adaptations at loci that manage core processes. We previously discovered concerted molecular changes among interacting members of meiotic machinery controlling crossover number upon adaptation to whole genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that adaptation to WGD has been mediated by adaptive gene flow between A. arenosa and A. lyrata. We find that A. lyrata underwent WGD more recently than A. arenosa, suggesting that pre-adapted alleles have rescued nascent A. lyrata, but we also detect gene flow in the opposite direction at functionally interacting loci under the most extreme levels of selection. These data indicate that bidirectional gene flow allowed for survival after WGD and that the merger of these species is greater than the sum of their parts

    Forest tree genomics: 10 achievements from the past 10 years and future prospects

    Get PDF
    This review highlights some of the discoveries and applications made possible by “omics” technologies over the last 10 years and provides perspectives for pioneering research to increase our understanding of tree biology.ContextA decade after the first forest tree genome sequence was released into the public domain, the rapidly evolving genomics and bioinformatics toolbox has advanced our understanding of the structure, functioning, and evolution of forest tree genomes.Aims and methodsThis review highlights some of the discoveries and applications that “omics” technologies have made possible for forest trees over the past 10 years.ResultsIn this review, we start by our current understanding of genome evolution and intricacies of gene regulation for reproduction, development, and responses to biotic and abiotic stresses. We then skim over advances in interactome analysis and epigenomics, the knowledge of the extent of genetic variation within and between species, revealing micro- and macro-evolutionary processes and species history, together with the complex architecture of quantitative traits. We finally end with applications in genetic resource conservation and breeding.ConclusionThe knowledge gained through the use of these technologies has a huge potential impact for adapting forests to the main challenges they will have to face: changing demand from ecosystem services with potentially conflicting strategies in terms of conservation and use, as well as climate changes and associated threats. Genomics will undoubtedly play a major role over the next decade and beyond, not only to further understand the mechanisms underlying adaptation and evolution but also to develop and implement innovative management and policy actions to preserve the adaptability of natural forests and intensively managed plantations
    corecore