63 research outputs found

    Can trial quality be reliably assessed from published reports of cancer trials: evaluation of risk of bias assessments in systematic reviews

    Get PDF
    To evaluate the reliability of risk of bias assessments based on published trial reports, for determining trial inclusion in meta-analyses

    Timely and reliable evaluation of the effects of interventions: a framework for adaptive meta-analysis (FAME)

    Get PDF
    Most systematic reviews are retrospective and use aggregate data AD) from publications, meaning they can be unreliable, lag behind therapeutic developments and fail to influence ongoing or new trials. Commonly, the potential influence of unpublished or ongoing trials is overlooked when interpreting results, or determining the value of updating the meta-analysis or need to collect individual participant data (IPD). Therefore, we developed a Framework for Adaptive Metaanalysis (FAME) to determine prospectively the earliest opportunity for reliable AD meta-analysis. We illustrate FAME using two systematic reviews in men with metastatic (M1) and non-metastatic (M0)hormone-sensitive prostate cancer (HSPC)

    Should Tyrosine Kinase Inhibitors Be Considered for Advanced Non-Small-Cell Lung Cancer Patients With Wild Type EGFR? Two Systematic Reviews and Meta-Analyses of Randomized Trials

    Get PDF
    Guidance concerning tyrosine kinase inhibitors (TKIs) for patients with wild type epidermal growth factor receptor (EGFR) and advanced non-small-cell lung cancer (NSCLC) after first-line treatment is unclear. We assessed the effect of TKIs as second-line therapy and maintenance therapy after first-line chemotherapy in two systematic reviews and meta-analyses, focusing on patients without EGFR mutations. Systematic searches were completed and data extracted from eligible randomized controlled trials. Three analytical approaches were used to maximize available data. Fourteen trials of second-line treatment (4388 patients) were included. Results showed the effect of TKIs on progression-free survival (PFS) depended on EGFR status (interaction hazard ratio [HR], 2.69; P = .004). Chemotherapy benefited patients with wild type EGFR (HR, 1.31; P < .0001), TKIs benefited patients with mutations (HR, 0.34; P = .0002). Based on 12 trials (85% of randomized patients) the benefits of TKIs on PFS decreased with increasing proportions of patients with wild type EGFR (P = .014). Six trials of maintenance therapy (2697 patients) were included. Results showed that although the effect of TKIs on PFS depended on EGFR status (interaction HR, 3.58; P < .0001), all benefited from TKIs (wild type EGFR: HR, 0.82; P = .01; mutated EGFR: HR, 0.24; P < .0001). There was a suggestion that benefits of TKIs on PFS decreased with increasing proportions of patients with wild type EGFR (P = .11). Chemotherapy should be standard second-line treatment for patients with advanced NSCLC and wild type EGFR. TKIs might be unsuitable for unselected patients. TKIs appear to benefit all patients compared with no active treatment as maintenance treatment, however, direct comparisons with chemotherapy are needed

    Adding abiraterone to androgen deprivation therapy in men with metastatic hormone-sensitive prostate cancer: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: There is a need to synthesise the results of numerous randomised controlled trials evaluating the addition of therapies to androgen deprivation therapy (ADT) for men with metastatic hormone-sensitive prostate cancer (mHSPC). This systematic review aims to assess the effects of adding abiraterone acetate plus prednisone/prednisolone (AAP) to ADT. METHODS: Using our framework for adaptive meta-analysis (FAME), we started the review process before trials had been reported and worked collaboratively with trial investigators to anticipate when eligible trial results would emerge. Thus, we could determine the earliest opportunity for reliable meta-analysis and take account of unavailable trials in interpreting results. We searched multiple sources for trials comparing AAP plus ADT versus ADT in men with mHSPC. We obtained results for the primary outcome of overall survival (OS), secondary outcomes of clinical/radiological progression-free survival (PFS) and grade III-IV and grade V toxicity direct from trial teams. Hazard ratios (HRs) for the effects of AAP plus ADT on OS and PFS, Peto Odds Ratios (Peto ORs) for the effects on acute toxicity and interaction HRs for the effects on OS by patient subgroups were combined across trials using fixed-effect meta-analysis. FINDINGS: We identified three eligible trials, one of which was still recruiting (PEACE-1 (NCT01957436)). Results from the two remaining trials (LATITUDE (NCT01715285) and STAMPEDE (NCT00268476)), representing 82% of all men randomised to AAP plus ADT versus ADT (without docetaxel in either arm), showed a highly significant 38% reduction in the risk of death with AAP plus ADT (HR = 0.62, 95% confidence interval [CI] = 0.53-0.71, p = 0.55 × 10(-10)), that translates into a 14% absolute improvement in 3-year OS. Despite differences in PFS definitions across trials, we also observed a consistent and highly significant 55% reduction in the risk of clinical/radiological PFS (HR = 0.45, 95% CI = 0.40-0.51, p = 0.66 × 10(-36)) with the addition of AAP, that translates to a 28% absolute improvement at 3 years. There was no evidence of a difference in the OS benefit by Gleason sum score, performance status or nodal status, but the size of the benefit may vary by age. There were more grade III-IV acute cardiac, vascular and hepatic toxicities with AAP plus ADT but no excess of other toxicities or death. INTERPRETATION: Adding AAP to ADT is a clinically effective treatment option for men with mHSPC, offering an alternative to docetaxel for men who are starting treatment for the first time. Future research will need to address which of these two agents or whether their combination is most effective, and for whom

    Non-Invasive Microstructure and Morphology Investigation of the Mouse Lung: Qualitative Description and Quantitative Measurement

    Get PDF
    BACKGROUND: Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. METHODS: In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. FINDINGS: The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. CONCLUSION: Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level

    Hemorrhage-Adjusted Iron Requirements, Hematinics and Hepcidin Define Hereditary Hemorrhagic Telangiectasia as a Model of Hemorrhagic Iron Deficiency

    Get PDF
    BACKGROUND: Iron deficiency anemia remains a major global health problem. Higher iron demands provide the potential for a targeted preventative approach before anemia develops. The primary study objective was to develop and validate a metric that stratifies recommended dietary iron intake to compensate for patient-specific non-menstrual hemorrhagic losses. The secondary objective was to examine whether iron deficiency can be attributed to under-replacement of epistaxis (nosebleed) hemorrhagic iron losses in hereditary hemorrhagic telangiectasia (HHT). METHODOLOGY/PRINCIPAL FINDINGS: The hemorrhage adjusted iron requirement (HAIR) sums the recommended dietary allowance, and iron required to replace additional quantified hemorrhagic losses, based on the pre-menopausal increment to compensate for menstrual losses (formula provided). In a study population of 50 HHT patients completing concurrent dietary and nosebleed questionnaires, 43/50 (86%) met their recommended dietary allowance, but only 10/50 (20%) met their HAIR. Higher HAIR was a powerful predictor of lower hemoglobin (p = 0.009), lower mean corpuscular hemoglobin content (p<0.001), lower log-transformed serum iron (p = 0.009), and higher log-transformed red cell distribution width (p<0.001). There was no evidence of generalised abnormalities in iron handling Ferritin and ferritin(2) explained 60% of the hepcidin variance (p<0.001), and the mean hepcidinferritin ratio was similar to reported controls. Iron supplement use increased the proportion of individuals meeting their HAIR, and blunted associations between HAIR and hematinic indices. Once adjusted for supplement use however, reciprocal relationships between HAIR and hemoglobin/serum iron persisted. Of 568 individuals using iron tablets, most reported problems completing the course. For patients with hereditary hemorrhagic telangiectasia, persistent anemia was reported three-times more frequently if iron tablets caused diarrhea or needed to be stopped. CONCLUSIONS/SIGNIFICANCE: HAIR values, providing an indication of individuals' iron requirements, may be a useful tool in prevention, assessment and management of iron deficiency. Iron deficiency in HHT can be explained by under-replacement of nosebleed hemorrhagic iron losses

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    • …
    corecore