329 research outputs found

    The influential of physico-chemical parameters on the distributions of oligochateas (Limnodrilus sp.) at the polluted downstream of the tropical Langat River, Peninsular Malaysia

    Get PDF
    The influential physico-chemical parameters on the spatial and temporal distribution of oligochateas (Limnodrilus sp.) at the polluted downstream of Langat River were studied in comparison to the unpolluted upstream for 10-months sampling from March 1998 to February 1999. Based on the correlation analysis (CA) and multiple stepwise regression analysis (SRA), the distribution, abundance and density of Limnodrilus sp. were almost consistent during the ten time samplings from April 1998 to February 1999. Based on CA, the density and distribution of Limnodrilus sp. correlated negatively with the pH and dissolved oxygen (DO) while positively correlated with conductivity, biological oxygen demand (BOD), NO3, NH3, total suspended solids (TSS), chemical oxygen demand (COD) and dissolved concentrations of Cu and Zn. Based on SRA, most of the above parameters are selected as influential factors in affecting the distribution and presence of Limnodrilus sp. on the tropical river. This indicated that the Limnodrilus sp. is a pollutant resistant worm since they can survive in the poor water quality ecosystem. These results based on CA and SRA signified the resistance and tolerance of Limnodrilus sp. survived at the polluted ecosystem of the tropical river. Hence, Limnodrilus sp. is a good bioindicator of polluted rivers in the tropical ecoregion. Journal of Applied Sciences and Environmental Management Vol. 10(3) 2006: 135-14

    Determination of Trace Elements in Sediments Samples by Using Neutron Activation Analysis

    Get PDF
    The Juru River is a highly industrialized, urbanized, and agricultural catchment. This study aimed to investigate trace elements in Juru mangrove sediments, including geochemical baselines and enrichment. Sediment was collected from the mangrove in Juru, Penang, Malaysia. A total of eight target elements was examined.  Instrumentation activation analysis (INAA) was used to determine the concentration of Fe, V, Cr, Zn and Co. Atomic absorption spectrometry (AAS) was used to determine the concentration of elements that not detectable by INAA (Cd, Pb, and As). In both methods, validated reference material studies were used for validation of the methodology. Metal pollution was estimated using the Enrichment Factor (EF), Geoaccumulation Index (Igeo), Contamination Factor (CF), and Pollutant Load Index (PLI). The EF, Igeo, and CF ranges from 0.45–7.96, -2.18 – 1.95, and 0.33–5.83 respectively. The order of accumulation of the elemental concentration found was Fe > Zn> Cr > V > Pb > As > Co >Cd. The computed mean value of PLI exceeds the unit (PLI > 1)

    On the computation of zone and double zone diagrams

    Full text link
    Classical objects in computational geometry are defined by explicit relations. Several years ago the pioneering works of T. Asano, J. Matousek and T. Tokuyama introduced "implicit computational geometry", in which the geometric objects are defined by implicit relations involving sets. An important member in this family is called "a zone diagram". The implicit nature of zone diagrams implies, as already observed in the original works, that their computation is a challenging task. In a continuous setting this task has been addressed (briefly) only by these authors in the Euclidean plane with point sites. We discuss the possibility to compute zone diagrams in a wide class of spaces and also shed new light on their computation in the original setting. The class of spaces, which is introduced here, includes, in particular, Euclidean spheres and finite dimensional strictly convex normed spaces. Sites of a general form are allowed and it is shown that a generalization of the iterative method suggested by Asano, Matousek and Tokuyama converges to a double zone diagram, another implicit geometric object whose existence is known in general. Occasionally a zone diagram can be obtained from this procedure. The actual (approximate) computation of the iterations is based on a simple algorithm which enables the approximate computation of Voronoi diagrams in a general setting. Our analysis also yields a few byproducts of independent interest, such as certain topological properties of Voronoi cells (e.g., that in the considered setting their boundaries cannot be "fat").Comment: Very slight improvements (mainly correction of a few typos); add DOI; Ref [51] points to a freely available computer application which implements the algorithms; to appear in Discrete & Computational Geometry (available online

    Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river

    Get PDF
    The present study aimed to assess the effects of anthropogenic activities on the heavy metal levels in the Langat River by transplantation of Corbicula javanica. In addition, potential ecological risk indexes (PERI) of heavy metals in the surface sediments of the river were also investigated. The correlation analysis revealed that eight metals (As, Co, Cr, Fe, Mn, Ni, Pb and Zn) in total soft tissue (TST) while five metals (As, Cd, Cr, Fe and Mn) in shell have positively and significantly correlation with respective metal concentration in sediment, indicating the clams is a good biomonitor of the metal levels. Based on clustering patterns, the discharge of dam impoundment, agricultural activities and urban domestic waste were identified as three major contributors of the metals in Pangsun, Semenyih and Dusun Tua, and Kajang, respectively. Various geochemical indexes for a single metal pollutant (geoaccumulation index (I geo), enrichment factors (EF), contamination factor (C f) and ecological risk (Er)) all agreed that Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn are not likely to cause adverse effect to the river ecosystem, but As and Pb could pose a potential ecological risk to the river ecosystem. All indexes (degree of contamination (C d), combined pollution index (CPI) and PERI) showed that overall metal concentrations in the tropical river are still within safe limit. River metal pollution was investigated. Anthropogenic activities were contributors of the metal pollution. Geochemical indexes showed that metals are within the safe limit

    Cardiac surgery and percutaneous intervention in pregnant women with heart disease

    Get PDF
    In pregnant women with heart disease, complications can arise due to the haemodynamic burden of pregnancy and to hypercoagulation. Most problems can be managed medically, but sometimes cardiac surgery or percutaneous intervention is unavoidable. Cardiac surgery has similar maternal mortality to that outside pregnancy, but foetal mortality and morbidity are considerable. Measures to reduce the risk by adaptation of the management of cardiopulmonary bypass are described. When gestational age is > 28 weeks, pre-surgery delivery of the foetus should be considered. Percutaneous intervention exposes the foetus to radiation. The radiation dose for common cardiac procedures, however, does not result in detectable harmful foetal effects

    Alpha-tocotrienol is the most abundant tocotrienol isomer circulated in plasma and lipoproteins after postprandial tocotrienol-rich vitamin E supplementation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tocotrienols (T3) and tocopherols (T), both members of the natural vitamin E family have unique biological functions in humans. T3 are detected in circulating human plasma and lipoproteins, although at concentrations significantly lower than α-tocopherol (α-T). T3, especially α-T3 is known to be neuropotective at nanomolar concentrations and this study evaluated the postprandial fate of T3 and α-T in plasma and lipoproteins.</p> <p>Methods</p> <p>Ten healthy volunteers (5 males and 5 females) were administered a single dose of vitamin E [526 mg palm tocotrienol-rich fraction (TRF) or 537 mg α-T] after 7-d pre-conditioning on a T3-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of T and T3 isomers in plasma, triacylglycerol-rich particles (TRP), LDL, and HDL were measured at each postprandial interval.</p> <p>Results</p> <p>After TRF supplementation, plasma α-T3 and γ-T3 peaked at 5 h (α-T3: 4.74 ± 1.69 μM; γ-T3: 2.73 ± 1.27 μM). δ-T3 peaked earlier at 4 h (0.53 ± 0.25 μM). In contrast, α-T peaked at 6 h (30.13 ± 2.91 μM) and 8 h (37.80 ± 3.59 μM) following supplementation with TRF and α-T, respectively. α-T was the major vitamin E isomer detected in plasma, TRP, LDL, and HDL even after supplementation with TRF (composed of 70% T3). No T3 were detected during fasted states. T3 are detected postprandially only after TRF supplementation and concentrations were significantly lower than α-T.</p> <p>Conclusions</p> <p>Bio-discrimination between vitamin E isomers in humans reduces the rate of T3 absorption and affects their incorporation into lipoproteins. Although low absorption of T3 into circulation may impact some of their physiological functions in humans, T3 have biological functions well below concentration noted in this study.</p

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications

    Get PDF
    Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.</jats:p

    Declining malaria transmission differentially impacts on the maintenance of humoral immunity to Plasmodium falciparum in children

    Get PDF
    BACKGROUND We investigated the poorly understood impact of declining malaria transmission on maintenance of antibodies to P. falciparum merozoite antigens and infected erythrocytes (IEs), including functional immunity. METHODS In a 3-year longitudinal cohort of 300 Kenyan children, antibodies to different merozoite AMA1 and MSP2 alleles, IE surface antigens, and antibody functional activities were quantified. RESULTS Over a period in which malaria transmission declined markedly, AMA1 and MSP2 antibodies decreased substantially; estimated half-lives of antibody duration were 0.8 and 1-3 years, respectively. However, 69-74% of children maintained their sero-positivity to AMA1 alleles and 42-52% to MSP2 alleles. Levels and prevalence of anti-merozoite antibodies were consistently associated with increasing age and concurrent parasitaemia. Antibodies promoting opsonic phagocytosis of merozoites declined rapidly (half-life 0.15 years). In contrast, complement-fixing antibodies to merozoites did not decline and antibodies to IE surface antigens expressing virulent phenotypes were much better maintained (half-life 4-10 years). CONCLUSIONS A decline in malaria transmission is associated with reduction in naturally-acquired immunity. However, loss of immunity is not universal; some key functional responses and antibodies to IEs were better maintained and these may continue to provide some protection. Findings have implications for malaria surveillance and control measures and informing vaccine development
    corecore