62 research outputs found

    Electrochemically synthesized polymers in molecular imprinting for chemical sensing

    Get PDF
    This critical review describes a class of polymers prepared by electrochemical polymerization that employs the concept of molecular imprinting for chemical sensing. The principal focus is on both conducting and nonconducting polymers prepared by electropolymerization of electroactive functional monomers, such as pristine and derivatized pyrrole, aminophenylboronic acid, thiophene, porphyrin, aniline, phenylenediamine, phenol, and thiophenol. A critical evaluation of the literature on electrosynthesized molecularly imprinted polymers (MIPs) applied as recognition elements of chemical sensors is presented. The aim of this review is to highlight recent achievements in analytical applications of these MIPs, including present strategies of determination of different analytes as well as identification and solutions for problems encountered

    Emerging therapies for breast cancer

    Full text link

    Estimating long-term survival temperatures at the assemblage Level in the marine environment: Towards macrophysiology

    Get PDF
    Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming

    CERN: Guardian of the Human Aspiration to Understand the Universe

    Get PDF
    The European Organization for Nuclear Research (CERN) is the world’s most formidable centre for particle physics. Its mission is radically ambitious: uncovering what the universe is made of and how it works. It advances that mission by providing particle accelerator facilities that enable world-class research in fundamental physics, bringing together scientists from all over the world to push the frontiers of science and technology. It has become widely recognized as one of the most successful cross-national collaborative research organizations of all times. Smart institutional design, good governance, resourceful leadership and resilient collaboration have underpinned the strong sense of interdependence, entrenched norms of mutual respect, trust, empathy and consensual decision-making that have allowed it to thrive

    Multidecadal variability of summer temperature over Romania and its relation with Atlantic Multidecadal Oscillation

    Get PDF
    We investigate the multidecadal variability of summer temperature over Romania as measured at 14 meteorological stations with long term observational records. The dominant pattern of summer temperature variability has a monopolar structure and shows pronounced multidecadal variations. A correlation analysis reveals that these multidecadal variations are related with multidecadal variations in the frequency of four daily atmospheric circulation patterns from the North Atlantic region. It is found that, on multidecadal time scales, negative summer mean temperature (TT) anomalies are associated with positive sea level pressure (SLP) anomalies centered over the northern part of the Atlantic Ocean and Scandinavia and negative SLP anomalies centered over the northern part of Africa. It is speculated that a possible cause of multidecadal fluctuations in the frequency of these four patterns are the sea surface temperature anomalies associated to the Atlantic Multidecadal Oscillation. These results have implications for predicting the evolution of summer temperature over Romania on multidecadal time scales
    • …
    corecore