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Abstract

Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The
approach used in the present paper estimates the relationship between rates of temperature change and upper
temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach
integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data
previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment,
which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum
environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in
performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference
between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of
how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their
vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance
increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the
Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has
potential for wide application in the identification of faunas with little capacity to survive environmental warming.
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Introduction

Understanding the factors shaping variation in the physiology,

ecology, and evolution of organisms is a fundamental issue for

biologists [1–5]. Among environmental parameters temperature is

possibly the best characterised and most fundamental as it affects

the rates of all biochemical reactions; it drives species distribution

and ecosystem level responses to climate variability [6–7]. In the

context of environmental change, it is important to be able to

evaluate not only the temperature limits of individual species but

how this extends to the assemblage and ecosystem level across

environments. Two main approaches currently dominate the

investigation of likely responses of organism distributions to this

change. The first is based on observations centred on identifying

species ranges and comparing these with current and past

environmental conditions to predict survival capabilities [8–10].

The second is based around experiments where animals are held

in the laboratory or modified field situations and then conditions

are manipulated [11–13]. Data from the latter will be utilised in

this analysis.

Thermal tolerance is usually quantified with two different

experimental methods [14,15]: i) the dynamic method, which

involves increasing or decreasing the test temperatures until an

end point (e.g. the thermal point at which locomotory activity

becomes disorganized and the animal loses its ability to escape

from conditions that will promptly lead to its death) is reached and

ii) the static method, which measures the time to death at constant

test temperatures. In the description of these two types of

experiment either the temperature exposure or time exposure

are used to determine species tolerances. Salt [16], using

experiments on insect cold-hardiness, was the first to take into

account this duality by describing the log-linear relationship

between the number of unfrozen insects and the time spent at

different temperatures. Furthermore, using a mathematical model,

Kilgour & McCauley [17] reconciled the two approaches by

producing a method to transform data from one type of

experiment to the other. In the same vein, Peck et al. [18]

recognised the importance of both time and temperature in the

establishment of temperature limits, when they evaluated upper

temperature limits of Antarctic marine species by describing the

relationship between rates of temperature change and upper

temperature limits (maximum temperatures for survival) of a range

of species.

In this paper, by combining the approach of Peck et al. [18]

with the Kilgour & McCauley [17] model, data from the literature

for both dynamic and static methods are used to evaluate subtidal

marine species’ upper temperature limits from several different

temperate geographic regions. These are then discussed from a

macrophysiological standpoint and compared with Antarctic data
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from Peck et al. [18]. Analysis of the relationship between upper

temperature limits and the rates of temperature change allows an

estimation of the maximum temperature at which a species can

survive for several months, the long-term survival temperature

(Ts). To place this new estimation of temperature limit in the

context of a thermal tolerance threshold, it can be viewed as a

temperature that is separate from the critical temperature (Tc) and

the pejus temperature (Tp) defined by Pörtner [19]: i) Tc is the

temperature at which the aerobic scope becomes minimal and the

animal will begin to utilise anaerobic metabolic pathways, ii) Tp is

the temperature at which performance falls below its optimum and

correlations suggest that beyond this temperature, both abundance

and growth begin to fall [20]. Ts, here, is defined as the

temperature at which the capacity of the organism is not at its

optimum but long-term survival is not threatened. Our approach

allows us to evaluate how long-term survival thermal thresholds

vary across widely separated marine ecosystems on a global scale,

in relation to the temperature of the environment.

Moreover, in the context of climate warming, it becomes very

important to be able to evaluate the physiological sensitivity of

organisms to changes in the temperature of their environment

[21–22]. With this aim, Deutsch et al. [23] used two heuristic

indicators. Warming Tolerance, which is the difference between

the critical thermal maximum of an ectotherm and the current

climatological temperature of the organism’s habitat (Thab, annual

mean temperature). This quantity approximates the average

amount of environmental warming an ectotherm can tolerate

before performance drops to fatal levels. The second indicator is

the Thermal Safety Margin which measures the difference

between an organism’s thermal optimum and its current climate

temperature.

In this framework, two hypotheses can be tested: i) Adaptation

to the cold always reduces the potential to cope with warm

temperatures or, in other words, upper thermal tolerance

decreases with habitat temperature ii) Warming tolerance

increases with latitude [23]. To investigate the second hypothesis,

a new index was used integrating the maximum long-term survival

temperature. This index, called Warming Allowance (WA),

approximates the maximum environmental temperature increase

an ectotherm can tolerate with or without a decrease in

performance but not endangering long-term survival. In this

study, WA is used to evaluate the sensitivity of assemblages in

different environments to warming.

Materials and Methods

Literature review
Data used in the analyses in this paper were collated from the

published literature. For the overall approach comparing different

temperate regions, the literature review focused on papers

providing data on upper temperature limits and matching different

criteria: i) marine subtidal species in temperate environments, ii)

experiments conducted during the summer season and iii)

experiments using preacclimation were included only if they were

done at the corresponding in situ temperature. Two types of

experiments were taken into account: i) those that used the dynamic

method in which the temperature is progressively increased until

50% of the individuals in the trial have died (called LT50 by

Stillman and Somero [24], used as upper thermal tolerance) and ii)

the static method in which the temperature is raised to a set value

and the time at which 50% of the individuals have died is recorded

(measure of upper lethal temperature limits, ULT50) [14]. Six

studies matched the criteria listed above [25–30], covering three

taxonomic groups from different regions: Northern Hemisphere

Warm Temperate environments (NHWT; South of France and

West coast of the United States of America), Southern Hemisphere

Warm Temperate environment (SHWT; Peru) and Cold Tem-

perate environment (CT; West coast of Scotland; Table S1). The

temperatures characterizing the different regions are presented in

Table S3. In Peru, the recorded difference between the mean

temperature in summer (15.861.2uC) and the mean temperature

in winter (14.660.7uC) was only 1.2uC. Because the difference is

small and not significant, we decided to include all the species in

Urban [25], which included both summer and winter experiments.

Taxonomic groups were pooled in this study to provide an

assemblage level assessment. Peck et al. [18] in their inter-species

upper temperature limits comparison tested for, but found no

statistically significant effect of phylum. A similar analysis was

considered here for tropical species but insufficient data were

available in the literature.

Data were also available for four Mediterranean bivalve species

[28–29] across seasons and they were therefore used to examine

variability between seasons.

Data transformation
Data from studies using the static method to assess upper lethal

temperature limits (ULT50) had to be transformed in order to

combine them with data from investigations using the dynamic

method. The establishment of the measure of this limit provided

by pooling data from the two kinds of experiments will be called

here the upper temperature limit (UTL). The model used for this

transformation was specifically designed to reconcile these two

methods of measuring upper temperature limits [17]. The model is

described in detail by Kilgour and McCauley [17], the following

section describes only the major steps of the transformation used to

allow data points from static temperature limit trials to be turned

into dynamic temperature limit data points by calculating a rate of

change.

K, b and Tc were constants found by fitting an exponential

relationship to the data for time to 50% mortality (Td) versus each

temperature (T) tested using the static method for each species.

Td~K|exp {bTð Þ ð1Þ

Tc was determined graphically (Figure S1).

The rate of change was then calculated, by using these constants

in the following equation:

Rate of change 0C=dayð Þ~ 1=Kbð Þ| exp bTð Þ{exp bTcð Þ½ � ð2Þ

This was the transformation used to compare short term, acute

heating experiments with slow warming data throughout this

investigation.

Analysis
To compare linear regressions established from the log-log

relationships of upper temperature limits versus rate of temper-

ature change between each environment and between seasons,

covariance analyses (ANCOVA) were used to test for differences in

slope and intercept (if slopes were not significantly different).

For the macrophysiological analysis, the overall comparison of

the different regions in the discussion, the maximum long-term

survival temperature was estimated. A non linear model was fitted

for the relationship between the upper temperature limit (UTL)

and the rate of temperature change. Two standard forms of

exponential models were fitted and the Aikaike Information

Criterion (AIC) was used to select the best one. The first model

Upper Temperature Limits-Marine Species
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tested followed this equation:

UTL~azRb ð3Þ

and the second followed this equation:

UTL~a{b|exp {cRð Þ ð4Þ

Where UTL is the temperature at which 50% mortality occurred,

R is the rate of temperature change expressed in day per uC and a,

b and c are constants fitted by the model. The constant ‘‘a’’ was

obtained as the asymptote of the curve and represented the

maximum long-term survival temperature. The best model in the

set used has the lowest AIC which was the second model (equation

4) for four of the five environments tested with DAIC (model AIC

minus that of the best-fit model) values between 2.8 and 10.6. The

only environment for which the AIC value was lower with the first

model was the Northern Hemisphere Warm Temperate Shallow

water environment with DAIC value of 3.8. In the discussion, only

the second model is presented.

Results

The log-log relationship for upper temperature limits of

temperate marine species versus rate of temperature change

showed different patterns between regional groups (Figure 1,

Table 1). Based on the covariance analysis (Table 1), the group of

species from the Northern Hemisphere Warm Temperate

environment was further split in two: one with shallow water

species (,2 m) and the other with species from slightly deeper

sites, with the intercepts of the slopes being different. This lead to

Figure 1. Log-log relationship for upper temperature limit (UTL) versus rate of temperature change. Only marine subtidal species from
experiments done in summer are used in this figure. Data for the dynamic method were combined with those from the static method after
transformation using the Kilgour and McCauley [17] model. Black triangles: species from Northern Hemisphere Warm Temperate environments
(NHWTSW) in the South of France and the West coast of the United States of America in very Shallow Water (,2 m); grey triangles: species from
Northern Hemisphere Warm Temperate environments (NHWT) in the South of France and the West coast of the United States of America in deeper
water (.2 m); open triangles: species from a Southern Hemisphere Warm Temperate environment (SHWT) on the Peru coast; and black squares:
species from a Cold Temperate environment (CT) in Scotland. For each ecosystem, a linear regression is fitted. Black triangles: y = 20.016+3.6
R2 = 0.57, grey triangles: y = 20.026+3.5 R2 = 0.75, open triangles: y = 20.076+3.3 R2 = 0.86, black squares: y = 20.036+3.3 R2 = 0.99.
doi:10.1371/journal.pone.0034655.g001

Table 1. Results of covariance analysis corresponding to the
linear regressions drawn in Figure 1 plus Antarctic data.

Intercept
Slope NHWTSW NHWT SHWT CT A

NHWTSW ,0.0001*

NHWT 0.07 ,0.0001*

SHWT ,0.0001* ,0.0001* ,0.0001*

CT 0.01* 0.06 0.013* ,0.0001*

A 0.01* 0.004* 0.27 0.37

P-values are indicated for the comparison between slopes and intercepts for
each pair of environments. NHWTSH: Northern Hemisphere Warm Temperate
environments in Shallow Water (,2 m), NHWT: Northern Hemisphere Warm
Temperate environments in deeper water, SHWT: Southern Hemisphere Warm
Temperate environment, CT: Cold Temperate environment and A: Antarctic
environment.
*: statistically significant.
doi:10.1371/journal.pone.0034655.t001
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four groups being identified: i) species from Northern Hemisphere

Warm Temperate environments in shallow water (NHWTSW), ii)

species from Northern Hemisphere Warm Temperate environ-

ments beyond 2 m depth (NHWT), iii) species from Southern

Hemisphere Warm Temperate environment (SHWT) and iv)

species from Cold Temperate environment (CT). In each group,

the upper temperature limit decreased at slower rates of

temperature change. There was also a lowering of the intercepts

of the regression lines from the NHWTSW to the CT

environment. Furthermore, the intercepts were directly linearly

related to the maximum habitat temperature (Tmax) of the

group’s location (0.03Tmax+2.88; p = 0.02). For the Northern

hemisphere groups, the slope of the linear regression increased

slightly (in absolute value) from NHWTSW to CT environments.

The Southern hemisphere group differed from all others as it had

a steeper slope.

For the Mediterranean species, where data were available for

each season, relationships followed the same pattern; upper

temperature limits decreased as rates of temperature change

(experimental warming) decreased (Figure 2). For all species, a

decrease in intercept was observed from summer to winter (i.e.

from warmer to cooler periods), and this was coupled with an

increase in slope (in absolute value; Tables 2 and 3).

Discussion

Effect of varying rate of warming on upper thermal
tolerance limits

Previously, Peck et al. [18] showed that upper temperature

limits varied in a curvilinear fashion with different rates of

warming for 14 species of Antarctic marine ectotherms.

In this study, similar relationships between the upper temper-

ature limit and the rate of change of experimental temperature

were obtained for marine subtidal temperate species acclimated to

summer in situ temperatures. Four different groups were identified

corresponding to the different regions. Due to significant

differences in the relationship (Table 1) the group from the

Northern Hemisphere Warm Temperate environment was split in

two: one with species in very shallow water (less than two meters

deep) and species in deeper water. This could be caused by the fact

that temperature is slightly higher in very shallow water habitats

(Table S3). At any rate of warming, the upper temperature limit

decreased with habitat temperature across Northern hemisphere

environments, which is consistent with Stillman and Somero [24],

who are suggested that the ability of heat tolerance may be lost in

absence of selection for it. The group from South America

(SHWT) had different responses to elevated temperature than the

other three, as the slope of the linear regression was steeper

(Table 1).

Figure 2. Log-log relationship for upper temperature limit
(UTL) versus rate of temperature change. This is shown for four
different species from the Mediterranean Sea in different seasons: A)
Cardium tuberculatum, B) Cardium glaucum, C) Donax trunculus and D)
Donax semistriatus. Black diamonds: summer, open black diamonds:
winter, grey diamonds in a and b: autumn and spring, grey diamonds in

c and d: autumn and open grey diamonds: spring. For each season and
each species a linear regression is fitted. A) Black diamonds:
y = 20.0346+3.5 R2 = 1, grey diamonds: y = 20.0346+3.4 R2 = 1, open
black diamonds: y = 20.046+3.4 R2 = 1; B) Black diamonds:
y = 20.0246+3.6 R2 = 1, grey diamonds: y = 20.0326+3.5 R2 = 1, open
black diamonds: y = 20.0346+3.5 R2 = 1; C) Black diamonds:
y = 20.0326+3.5 R2 = 1, grey diamonds: y = 20.0386+3.5 R2 = 1, open
grey diamonds: y = 20.0396+3.5 R2 = 1, open black diamonds:
y = 20.0486+3.5 R2 = 1; D) Black diamonds: y = 20.0236+3.5 R2 = 1,
grey diamonds: y = 20.0376+3.4 R2 = 1, open grey diamonds:
y = 20.0346+3.4 R2 = 1, open black diamonds: y = 20.0356+3.4
R2 = 0.99.
doi:10.1371/journal.pone.0034655.g002
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Macrophysiological analysis
The data presented here for species from temperate regions can

be compared to those for benthic fish, bivalves and gastropods

from Antarctica (A) from Peck et al. [18] (Table S2). The analysis

was taxonomically restricted to minimise any added variability due

to taxonomic differences. Based on the expanded data set (Figure 3,

Table 1), slopes of the log-log relationships (slopes from the

Figure 1+Antarctic environment) became steeper from the

warmest (NHWTSW) to the coldest environments (A). Moreover,

the intercept (I) was linearly correlated to the slope in this

relationship when the SHWT was excluded (0.07I-0.27;

p = 0.0003). Indeed, in this framework, the SHWT environment

studied appears to be an exception, as the slope for this

environment differed significantly from those of all the other

temperate environments studied and was closer to that of the

Antarctic environment (Table 1) than other temperate sites.

How does adaptation to the cold reduce resistance to
the warm?

Stillman and Somero [24] observed on a vertical gradient that

although low-intertidal and subtidal species generally have LT50’s

that are considerably higher than maximum microhabitat

temperatures, the actual LT50’s are lower than those that

ancestral, intertidal species may have had. From these observa-

tions, they suggested that, in the absence of selection for heat

tolerance, this ability may be lost or that there may be

physiological costs involved in maintaining an elevated LT50.

Moreover, Pörtner [19], showed that critical temperatures (Tc)

differ between species and populations depending on latitude or

seasonal temperature acclimatisation and are therefore related to

geographic distribution.

In this study, a significant trend in the slope of the relationship

between upper temperature limits and rate of experimental

warming across regions is observed as an overall lowering of the

elevation of the relationships from warm to cold environments.

This is in agreement with the hypothesis suggested by Stillman and

Somero [24]. Moreover, this is mirrored by a similar trend for the

data for seasonal effects on this relationship in bivalve molluscs

from the Mediterranean Sea (Figure 2, Tables 2 and 3), where the

intercepts of the relationships was lower in winter. The seasonal

acclimatisation of upper thermal tolerance is also in agreement

with Stillman and Somero [24] concerning the cost of maintaining

an elevated upper temperature limit.

Upper temperature limits are lower in colder environments both

at slow and fast rates of temperature change. This follows the

paradigm that the more a species is adapted to cold temperatures,

the lower its ability to survive high temperatures. However, the

upwelling environment off Peru (SHWT) differs from the other

environments, where the loss of ability to cope with high

temperatures is not as marked. An explanation for this may be

that in the Peru system, species with very different historical

origins coexist. For example, Argopecten purpuratus is a relic of a

tropical/subtropical fauna that once dominated the Peruvian

shores during the Miocene [31] while the most recently colonizing

macro benthic species of the area (e.g. the bivalve mollusc Gari

solida) are more typical upwelling – adapted, cold – water species

[32]. This environment is unusual in containing a mix of both

species originally ‘‘warm-adapted’’ and species originally ‘‘cold-

adapted’’. This is in contrast with the other environments studied

that generally contain only species coming historically from

warmer environments. This may account for the unusual

responses to rate of warming for the Peru upwelling fauna

compared to the other regions studied, as demonstrated by the

different slope in Table 1.

Are species from some environments more vulnerable
than others?

A possible way to explain the translation in upper temperature

limits between the five environments studied can be obtained by

comparing species’ upper temperature limits with the field summer

temperature at each site. This was done by fitting a non linear

model to the data of upper temperature limit versus rate of change

for each environment (Figure 4). The value of the asymptote given

by the model represents the maximum long-term survival

Table 2. Results of covariance analysis corresponding to the linear regressions drawn in Figure 2 A and B.

Species Intercept Slope Winter Spring and Autumn Summer

Cardium tuberculatum Winter

Spring and Autumn 0.005* ,0.0001*

Summer 0.007* 0.94

Cardium glaucum Winter 0.008*

Spring and Autumn 0.08

Summer 0.001* ,0.0001*

P-values are indicated for the comparison between slopes and intercepts for each season and species.
*: statistically significant.
doi:10.1371/journal.pone.0034655.t002

Table 3. Results of covariance analysis corresponding to the
linear regressions drawn in Figure 2 C and D.

Species Intercept Slope Winter Spring Autumn Summer

Donax
trunculus

Winter

Spring 0.0004* ,0.0001*

Autumn ,0.0001* 0.24

Summer ,0.0001* 0.003* 0.002*

Donax
semistriatus

Winter 0.16 ,0.0001*

Spring 0.71 ,0.0001*

Autumn 0.64 0.9

Summer 0.003* 0.0001* ,0.0001*

P-values are indicated for the comparison between slopes and intercepts for
each season and species.
*: statistically significant.
doi:10.1371/journal.pone.0034655.t003
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temperature. For each environment studied, calculating long-term

survival limits this way is more robust than a direct measure because

it uses temperature limits across a wide range of warming scenarios

and is affected less by short-term factors that may be important in

single time point experiments. The maximum long-term survival

temperature obtained can be compared with the in situ mean

maximum observed habitat temperature to identify any possible

relationship. The difference between the maximum long-term

survival temperature and the in situ mean maximum temperature

varies from 2.9 to 9.7 (Table 4). These values can be defined, at least

in principle, as the maximum environmental temperature increase

which species groups in each environment can tolerate (with or

without a decrease in performance but not endangering survival).

We can call this the Warming Allowance (WA). Compared to other

indices used to evaluate sensitivity of the species to environmental

warming, the WA was designed to be of more ecological relevance.

The two other indices previously used utilized different temperature

limits for comparison to habitat temperature [23]. The Thermal

Safety margin (TSM) is calculated from the optimum temperature

and the Warming Tolerance (WT), with the CTmax. The first one

overrates the sensitivity of a species to environmental warming while

the latter underestimates it.

Using the new WA index to evaluate latitudinal patterns of the

relationship between long-term survival limits and the maximum

experienced environmental temperature for marine environments,

produces a pattern that is not straightforward. This contrasts with

previous studies that have found, or assumed, linear changes in

thermal tolerance or acclimation capacity across latitudinal

gradients e.g. [23,33–34]. These studies also suggested the

biological impacts of temperature change may be most profound

in tropical rather than in temperate areas despite predictions from

climate models for much smaller thermal changes in the former. In

our study, the species where long-term survival limits were closest

to experienced maximum temperatures were from the upwelling

ecosystem in the South Pacific. The link between the WA and

physical environmental characteristics can also be assessed in

relation to environment temperature variability. Although the data

are limited, and care is needed in interpretation, the calculated

long-term survival limits from more variable environments are

further above the experienced summer maxima than those from

more stable regions, following the predictions of the climate

variability hypothesis [35]. Thus the more variable temperature

environments studied here are the cold temperate and the warm

temperate sites in the North hemisphere. At these sites the WA

values are between 6.2 and 9.7 while in the least variable region

(Antarctica) the WA value is 3.5.

Antarctic ecosystem
The WA value of the Antarctic environment is particularly low

compared to temperate values with a maximum long-term survival

temperature of 4.5uC. Long-term acclimation studies have been done

on different species from Antarctica [18,36] showing that several of

the species tested were not able to survive one month at 4uC. These

data corroborate our estimation of the maximum long-term survival

temperature and agree with data showing that in highly stenothermal

environments such as Antarctica, acclimation capacity is low [36].

An upwelling ecosystem: a particular case to test the WA
validity

The Peru upwelling ecosystem has a WA value similar to the

other temperate regions, despite usually being described as an

Figure 3. Correlation between Slope and Intercept (from Figure 1+Antarctic environment). Each diamond represents an environment.
NHWTSW: Northern Hemisphere Warm Temperate environments in the South of France and the West coast of the United States of America in very
Shallow Water (,2 m); NHWT: Northern Hemisphere Warm Temperate environments in the South of France and the West coast of the United States
of America in deeper water (.2 m); SHWT: Southern Hemisphere Warm Temperate environment on the Peru coast; CT: Cold Temperate environment
in Scotland; A: Antarctic environment. Linear regression SHWT excepted: y = 0.07620.27, R2 = 0.99, p-value: 0.0003.
doi:10.1371/journal.pone.0034655.g003
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PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e34655



environment with little variation in annual water temperatures

(between 16 and 21uC) [25]. However, this ecosystem is exposed

intermittently, on average every 3 to 7 years, to the effects of the El

Niño/Southern Oscillation (ENSO) which varies in intensity [37].

It leads to two changes which are fundamental for the Latin

American Pacific ecosystem: water temperature increases and the

thermocline drops deeper [25]. The mean maximum summer sea

temperature during 1983–2004 which included two El Niño

events (1982–1983 and 1997–1998) was 17.5uC. It was 16.5uC

excluding the El Niño events but rose to 22.3uC during the El

Niño years with peaks of more than 25uC [32]. Interestingly, when

our extrapolated WA values are compared to habitat maxima

during El Niño years, a low value (2.9) is obtained which could

even be close to zero during extreme El Niño events. Our analysis

thus indicates that the species living there are not able to cope with

the high temperatures of El Niño events and can only survive short

periods before dying during these events. Ecological studies

confirm the negative impact of the El Niño events on these

Table 4. Maximum long-term survival temperature estimate from the asymptote value given by the non linear model and the
standard error corresponding.

Environment Maximum long-term survival temperature (6C) Standard error WA

NHWTSW 34.6 0.3 8.5

NHWT 31.6 0.3 6.2

SHWT 25.2 0.7 7.7

SHWT out of El Niño event 25.2 0.7 8.7

SHWT during El Niño event 25.2 0.7 2.9

CT 25.7 0.2 9.7

A 4.5 2.4 3.5

WA is the Warming allowance represented by the difference between the maximum long-term survival temperature and the in situ mean maximum temperature.
NHWTSH: Northern Hemisphere Warm Temperate environment in Shallow Water (,2 m), NHWT: Northern Hemisphere Warm Temperate environment in deeper water,
SHWT: Southern Hemisphere Warm Temperate environment, CT: Cold Temperate environment and A: Antarctic environment.
doi:10.1371/journal.pone.0034655.t004

Figure 4. Correlation between upper temperature limit (UTL) and rate of temperature change. Black triangles: Northern Hemisphere
Warm Temperate environments in Shallow Water (,2 m; NHWTSW), grey triangles: Northern Hemisphere Warm Temperate environments in deeper
water (NHWT), open triangles: Southern Hemisphere Warm Temperate environment (SHWT), black squares: Cold Temperate environment (CT) and
black diamonds: Antarctica (A). For each environment, the non linear model described in the methods is fitted.
doi:10.1371/journal.pone.0034655.g004
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populations [37–38] with significant mortalities and large

reductions in reproductive effort reported. Thus, if the variability

of the environment is often linked with phenotypic plasticity

[3,5,39], the unpredictability of the environment coupled with

irregular extreme events such as El Niño can have substantial

influences on survival [40–43].

Conclusions
This study presents a new method for estimating the maximum

long-term survival temperature, for a species, population or

community which can be used to compare organisms from

different environments and evaluate their sensitivity to environ-

mental change. Moreover, this study shows that multiple factors

have to be taken into account to understand the upper

temperature limits of species in different environments, these

include: i) the maximum temperature of the environment, ii) the

temperature variability and predictability of the environment and

iii) the evolutionary history of the species. Further questions need

to be answered to increase understanding of the impact of

environmental change. These include the link between the

evolutionary history of a species and the potential of this species

to adapt to change; are species more finely adapted to their

environments less adaptable? One way to try to address this

question could be by comparing species from Arctic, Antarctic and

tropical environments which are all stable in terms of temperature,

but which contain species with markedly different evolutionary

histories.
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Figure S1 Additional information for the model used to
transform the data. Graphical illustration of the method used

to obtain the different constants used in equation 2. The equation

in the figure comes from fitting the exponential curve and the

circles show the values needed to calculate rate of change with

Kilgour & McCauley’s model [17].
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(DOC)

Table S3 Environmental parameters for the different
sites studied.

(DOC)

Acknowledgments

The Authors are grateful to Andrew Clarke, Peter Convey, Melody Clark

and two anonymous reviewers for their useful comments on the manuscript

and to Fred Jean for help with the non linear model. We thank SOMLIT

(Service d’Observation en Milieu LITtoral), Jaime Humberto Mendo

Aguilar and the Instituto del Mar del Perú, George Slesser and the
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