125 research outputs found
Multimode fibre:Light-sheet microscopy at the tip of a needle
We also thank the UK Engineering and Physics Sciences Research Council for funding under grant EP/J01771X/1. Finally, we would like to thank EXCELLENT TEAMS (CZ.1.07/2.3.00/30.0005) from European Social Fund and CEITEC - Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund for support.Light-sheet fluorescence microscopy has emerged as a powerful platform for 3-D volumetric imaging in the life sciences. Here, we introduce an important step towards its use deep inside biological tissue. Our new technique, based on digital holography, enables delivery of the light-sheet through a multimode optical fibre - an optical element with extremely small footprint, yet permitting complex control of light transport processes within. We show that this approach supports some of the most advanced methods in light-sheet microscopy: by taking advantage of the cylindrical symmetry of the fibre, we facilitate the wavefront engineering methods for generation of both Bessel and structured Bessel beam plane illumination. Finally, we assess the quality of imaging on a sample of fluorescent beads fixed in agarose gel and we conclude with a proof-of-principle imaging of a biological sample, namely the regenerating operculum prongs of Spirobranchus lamarcki.Publisher PDFPeer reviewe
Scalar and vector Slepian functions, spherical signal estimation and spectral analysis
It is a well-known fact that mathematical functions that are timelimited (or
spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the
finite precision of measurement and computation unavoidably bandlimits our
observation and modeling scientific data, and we often only have access to, or
are only interested in, a study area that is temporally or spatially bounded.
In the geosciences we may be interested in spectrally modeling a time series
defined only on a certain interval, or we may want to characterize a specific
geographical area observed using an effectively bandlimited measurement device.
It is clear that analyzing and representing scientific data of this kind will
be facilitated if a basis of functions can be found that are "spatiospectrally"
concentrated, i.e. "localized" in both domains at the same time. Here, we give
a theoretical overview of one particular approach to this "concentration"
problem, as originally proposed for time series by Slepian and coworkers, in
the 1960s. We show how this framework leads to practical algorithms and
statistically performant methods for the analysis of signals and their power
spectra in one and two dimensions, and, particularly for applications in the
geosciences, for scalar and vectorial signals defined on the surface of a unit
sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics,
  edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be
  published by Springer Verlag. This is a slightly modified but expanded
  version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the
  Handbook, when it was called: Slepian functions and their use in signal
  estimation and spectral analysi
Behavior of propagating and evanescent components in azimuthally polarized non-paraxial fields
Intensity Weighted Subtraction Microscopy Approach for Image Contrast and Resolution Enhancement
We propose and demonstrate a novel subtraction microscopy algorithm, exploiting fluorescence emission difference or switching laser mode and their derivatives for image enhancement. The key novelty of the proposed approach lies in the weighted subtraction coefficient, adjusted pixel-by-pixel with respect to the intensity distributions of initial images. This method produces significant resolution enhancement and minimizes image distortions. Our theoretical and experimental studies demonstrate that this approach can be applied to any optical microscopy techniques, including label free and non-linear methods, where common super-resolution techniques cannot be used
Microscopy and its focal switch.
Until not very long ago, it was widely accepted that lens-based (far-field) optical microscopes cannot visualize details much finer than about half the wavelength of light. The advent of viable physical concepts for overcoming the limiting role of diffraction in the early 1990s set off a quest that has led to readily applicable and widely accessible fluorescence microscopes with nanoscale spatial resolution. Here I discuss the principles of these methods together with their differences in implementation and operation. Finally, I outline potential developments
Microscope image reconstruction
In brightfield, phase-contrast or polarization microscopy, the image can be modeled by using scattering theory. The object, consisting of spatial variations in complex refractive index, scatters components of an angular spectrum of plane waves, and the image calculated by integration over incident and scattered waves. This approach takes into account the high aperture effects, important in microscope imaging. Rigorous methods can be used to calculate the scattering by the object.1 However, these methods, in addition to being in general very computationally intensive, result in the disadvantges that it is difficult to see trends in the behaviour and usually impracticable to reconstruct the object from the image data.</jats:p
Joint Optimization Scheme for the Planning and Operations of Shared Autonomous Electric Vehicle Fleets Serving Mobility on Demand
Super-resolving filters as diffractive optical elements
Super-resolving filters have potential applications in the areas of optical data storage,1-3 lithography4 and microscopy.5-6 In many applications the behaviour of the filter in the presence of defocus is important. For example, for lithography a large depth of focus is desirable, whereas in microscopy high axial resolution is often required. The effect of particular filters on the three-dimensional focal distribution has therefore been studied.7-9 It is found that filters which are super-resolving in the transverse direction can be either super-resolving or apodizing in the axial direction. Indeed, a minimum in intensity is often found along the axis at the focal point. For amplitude filters, simple design rules for the three-dimensional focusing properties have been proposed.7</jats:p
Structured illumination microscopy and image scanning microscopy: a review and comparison of imaging properties
- …
