1,011 research outputs found

    Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity QED

    Get PDF
    Studies of ultracold atoms in optical lattices link various disciplines, providing a playground where fundamental quantum many-body concepts, formulated in condensed-matter physics, can be tested in much better controllable atomic systems, e.g., strongly correlated phases, quantum information processing. Standard methods to measure quantum properties of Bose-Einstein condensates (BECs) are based on matter-wave interference between atoms released from traps which destroys the system. Here we propose a nondestructive method based on optical measurements, and prove that atomic statistics can be mapped on transmission spectra of a high-Q cavity. This can be extremely useful for studying phase transitions between Mott insulator and superfluid states, since various phases show qualitatively distinct light scattering. Joining the paradigms of cavity quantum electrodynamics (QED) and ultracold gases will enable conceptually new investigations of both light and matter at ultimate quantum levels, which only recently became experimentally possible. Here we predict effects accessible in such novel setups.Comment: 6 pages, 3 figure

    Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk

    Full text link
    It is well recognised that data mining and statistical analysis pose a serious treat to privacy. This is true for financial, medical, criminal and marketing research. Numerous techniques have been proposed to protect privacy, including restriction and data modification. Recently proposed privacy models such as differential privacy and k-anonymity received a lot of attention and for the latter there are now several improvements of the original scheme, each removing some security shortcomings of the previous one. However, the challenge lies in evaluating and comparing privacy provided by various techniques. In this paper we propose a novel entropy based security measure that can be applied to any generalisation, restriction or data modification technique. We use our measure to empirically evaluate and compare a few popular methods, namely query restriction, sampling and noise addition.Comment: 20 pages, 4 figure

    Rapid Diagnostic Algorithms as a Screening Tool for Tuberculosis: An Assessor Blinded Cross-Sectional Study

    Get PDF
    Background: A major obstacle to effectively treat and control tuberculosis is the absence of an accurate, rapid, and low-cost diagnostic tool. A new approach for the screening of patients for tuberculosis is the use of rapid diagnostic classification algorithms. Methods: We tested a previously published diagnostic algorithm based on four biomarkers as a screening tool for tuberculosis in a Central European patient population using an assessor-blinded cross-sectional study design. In addition, we developed an improved diagnostic classification algorithm based on a study population at a tertiary hospital in Vienna, Austria, by supervised computational statistics. Results: The diagnostic accuracy of the previously published diagnostic algorithm for our patient population consisting of 206 patients was 54% (CI: 47%–61%). An improved model was constructed using inflammation parameters and clinical information. A diagnostic accuracy of 86% (CI: 80%–90%) was demonstrated by 10-fold cross validation. An alternative model relying solely on clinical parameters exhibited a diagnostic accuracy of 85% (CI: 79%–89%). Conclusion: Here we show that a rapid diagnostic algorithm based on clinical parameters is only slightly improved by inclusion of inflammation markers in our cohort. Our results also emphasize the need for validation of new diagnostic algorithms in different settings and patient populations

    Reassessing associations between white matter and behaviour with multimodal microstructural imaging

    Get PDF
    Several studies have established specific relationships between White Matter (WM) and behaviour. However, these studies have typically focussed on fractional anisotropy (FA), a neuroimaging metric that is sensitive to multiple tissue properties, making it difficult to identify what biological aspects of WM may drive such relationships. Here, we carry out a pre-registered assessment of WM-behaviour relationships in 50 healthy individuals across multiple behavioural and anatomical domains, and complementing FA with myelin-sensitive quantitative MR modalities (MT, R1, R2∗). Surprisingly, we only find support for predicted relationships between FA and behaviour in one of three pre-registered tests. For one behavioural domain, where we failed to detect an FA-behaviour correlation, we instead find evidence for a correlation between behaviour and R1. This hints that multimodal approaches are able to identify a wider range of WM-behaviour relationships than focusing on FA alone. To test whether a common biological substrate such as myelin underlies WM-behaviour relationships, we then ran joint multimodal analyses, combining across all MRI parameters considered. No significant multimodal signatures were found and power analyses suggested that sample sizes of 40-200 may be required to detect such joint multimodal effects, depending on the task being considered. These results demonstrate that FA-behaviour relationships from the literature can be replicated, but may not be easily generalisable across domains. Instead, multimodal microstructural imaging may be best placed to detect a wider range of WM-behaviour relationships, as different MRI modalities provide distinct biological sensitivities. Our findings highlight a broad heterogeneity in WM's relationship with behaviour, suggesting that variable biological effects may be shaping their interaction

    Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma

    Get PDF
    Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond “bad” and “good” cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia

    Pointed Wings, Low Wingloading and Calm Air Reduce Migratory Flight Costs in Songbirds

    Get PDF
    Migratory bird, bat and insect species tend to have more pointed wings than non-migrants. Pointed wings and low wingloading, or body mass divided by wing area, are thought to reduce energy consumption during long-distance flight, but these hypotheses have never been directly tested. Furthermore, it is not clear how the atmospheric conditions migrants encounter while aloft affect their energy use; without such information, we cannot accurately predict migratory species' response(s) to climate change. Here, we measured the heart rates of 15 free-flying Swainson's Thrushes (Catharus ustulatus) during migratory flight. Heart rate, and therefore rate of energy expenditure, was positively associated with individual variation in wingtip roundedness and wingloading throughout the flights. During the cruise phase of the flights, heart rate was also positively associated with wind speed but not wind direction, and negatively but not significantly associated with large-scale atmospheric stability. High winds and low atmospheric stability are both indicative of the presence of turbulent eddies, suggesting that birds may be using more energy when atmospheric turbulence is high. We therefore suggest that pointed wingtips, low wingloading and avoidance of high winds and turbulence reduce flight costs for small birds during migration, and that climate change may have the strongest effects on migrants' in-flight energy use if it affects the frequency and/or severity of high winds and atmospheric instability

    The Sylvester Resultant Matrix and Image Deblurring

    Get PDF
    This paper describes the application of the Sylvester resultant matrix to image deblurring. In particular, an image is represented as a bivariate polynomial and it is shown that operations on polynomials, specifically greatest common divisor (GCD) computations and polynomial divisions, enable the point spread function to be calculated and an image to be deblurred. The GCD computations are performed using the Sylvester resultant matrix, which is a structured matrix, and thus a structure-preserving matrix method is used to obtain a deblurred image. Examples of blurred and deblurred images are presented, and the results are compared with the deblurred images obtained from other methods

    Multifractal and entropy analysis of resting-state electroencephalography reveals spatial organization in local dynamic functional connectivity

    Get PDF
    Functional connectivity of the brain fluctuates even in resting-state condition. It has been reported recently that fluctuations of global functional network topology and those of individual connections between brain regions expressed multifractal scaling. To expand on these findings, in this study we investigated if multifractality was indeed an inherent property of dynamic functional connectivity (DFC) on the regional level as well. Furthermore, we explored if local DFC showed region-specific differences in its multifractal and entropy-related features. DFC analyses were performed on 62-channel, resting-state electroencephalography recordings of twelve young, healthy subjects. Surrogate data testing verified the true multifractal nature of regional DFC that could be attributed to the presumed nonlinear nature of the underlying processes. Moreover, we found a characteristic spatial distribution of local connectivity dynamics, in that frontal and occipital regions showed stronger long-range correlation and higher degree of multifractality, whereas the highest values of entropy were found over the central and temporal regions. The revealed topology reflected well the underlying resting-state network organization of the brain. The presented results and the proposed analysis framework could improve our understanding on how resting-state brain activity is spatio-temporally organized and may provide potential biomarkers for future clinical research

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD
    corecore