134 research outputs found

    FAUST: IX. Multiband, multiscale dust study of L1527 IRS. Evidence for variations in dust properties within the envelope of a class 0/I young stellar object

    Get PDF
    Context. Early dust grain growth in protostellar envelopes infalling on young disks has been suggested in recent studies, supporting the hypothesis that dust particles start to agglomerate already during the class 0/I phase of young stellar objects. If this early evolution were confirmed, it would impact the usually assumed initial conditions of planet formation, where only particles with sizes ≲0.25 µm are usually considered for protostellar envelopes. / Aims. We aim to determine the maximum grain size of the dust population in the envelope of the class 0/I protostar L1527 IRS, located in the Taurus star-forming region (140 pc). / Methods. We use Atacama Large millimeter/submillimeter Array and Atacama Compact Array archival data and present new observations, in an effort to both enhance the signal-to-noise ratio of the faint extended continuum emission and properly account for the compact emission from the inner disk. Using observations performed in four wavelength bands and extending the spatial range of previous studies, we aim to place tight constraints on the spectral (α) and dust emissivity (β) indices in the envelope of L1527 IRS. / Results. We find a rather flat α ~ 3.0 profile in the range 50–2000 au. Accounting for the envelope temperature profile, we derived values for the dust emissivity index, 0.9 < β < 1.6, and reveal a tentative, positive outward gradient. This could be interpreted as a distribution of mainly interstellar medium like grains at 2000 au, gradually progressing to (sub)millimeter-sized dust grains in the inner envelope, where at R = 300 au, β = 1.1 ± 0.1. Our study supports a variation of the dust properties in the envelope of L1527 IRS. We discuss how this can be the result of in situ grain growth, dust differential collapse from the parent core, or upward transport of disk large grains

    A systematic review of Vancouver B2 and B3 periprosthetic femoral fractures

    Get PDF
    Aims The aim of this study was to investigate the outcomes of Vancouver type B2 and B3 fractures by performing a systematic review of the methods of surgical treatment which have been reported. Materials and Methods A systematic search was performed in Ovid MEDLINE, Embase and the Cochrane Central Register of Controlled Trials. For inclusion, studies required a minimum of ten patients with a Vancouver type B2 and/or ten patients with a Vancouver type B3 fracture, a minimum mean follow-up of two years and outcomes which were matched to the type of fracture. Studies were also required to report the rate of re-operation as an outcome measure. The protocol was registered in the PROSPERO database. Results A total of 22 studies were included based on the eligibility criteria, including 343 B2 fractures and 167 B3 fractures. The mean follow-up ranged from 32 months to 74 months. Of 343 Vancouver B2 fractures, the treatment in 298 (86.8%) involved revision arthroplasty and 45 (12.6%) were treated with internal fixation alone. A total of 37 patients (12.4%) treated with revision arthroplasty and six (13.3%) treated by internal fixation only underwent further re-operation. Of 167 Vancouver B3 fractures, the treatment in 160 (95.8%) involved revision arthroplasty and eight (4.8%) were treated with internal fixation without revision. A total of 23 patients (14.4%) treated with revision arthroplasty and two (28.6%) treated only with internal fixation required re-operation. Conclusion A significant proportion, particularly of B2 fractures, were treated without revision of the stem. These were associated with a higher rate of re-operation. The treatment of B3 fractures without revision of the stem resulted in a high rate of re-operation. This demonstrates the importance of careful evaluation and accurate characterisation of the fracture at the time of presentation to ensure the correct management. There is a need for improvement in the reporting of data in case series recording the outcome of the surgical treatment of periprosthetic fractures. We have suggested a minimum dataset to improve the quality of data in studies dealing with these fractures

    Genetic Tests for Ecological and Allopatric Speciation in Anoles on an Island Archipelago

    Get PDF
    From Darwin's study of the Galapagos and Wallace's study of Indonesia, islands have played an important role in evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique. Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence. The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the paucity of anole species in the Lesser Antilles compared to the Greater Antilles

    Relative Impacts of Adult Movement, Larval Dispersal and Harvester Movement on the Effectiveness of Reserve Networks

    Get PDF
    Movement of individuals is a critical factor determining the effectiveness of reserve networks. Marine reserves have historically been used for the management of species that are sedentary as adults, and, therefore, larval dispersal has been a major focus of marine-reserve research. The push to use marine reserves for managing pelagic and demersal species poses significant questions regarding their utility for highly-mobile species. Here, a simple conceptual metapopulation model is developed to provide a rigorous comparison of the functioning of reserve networks for populations with different admixtures of larval dispersal and adult movement in a home range. We find that adult movement produces significantly lower persistence than larval dispersal, all other factors being equal. Furthermore, redistribution of harvest effort previously in reserves to remaining fished areas (‘fishery squeeze’) and fishing along reserve borders (‘fishing-the-line’) considerably reduce persistence and harvests for populations mobile as adults, while they only marginally changes results for populations with dispersing larvae. Our results also indicate that adult home-range movement and larval dispersal are not simply additive processes, but rather that populations possessing both modes of movement have lower persistence than equivalent populations having the same amount of ‘total movement’ (sum of larval and adult movement spatial scales) in either larval dispersal or adult movement alone

    Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers

    Sequestration of Highly Expressed mRNAs in Cytoplasmic Granules, P-Bodies, and Stress Granules Enhances Cell Viability

    Get PDF
    Transcriptome analyses indicate that a core 10%–15% of the yeast genome is modulated by a variety of different stresses. However, not all the induced genes undergo translation, and null mutants of many induced genes do not show elevated sensitivity to the particular stress. Elucidation of the RNA lifecycle reveals accumulation of non-translating mRNAs in cytoplasmic granules, P-bodies, and stress granules for future regulation. P-bodies contain enzymes for mRNA degradation; under stress conditions mRNAs may be transferred to stress granules for storage and return to translation. Protein degradation by the ubiquitin-proteasome system is elevated by stress; and here we analyzed the steady state levels, decay, and subcellular localization of the mRNA of the gene encoding the F-box protein, UFO1, that is induced by stress. Using the MS2L mRNA reporter system UFO1 mRNA was observed in granules that colocalized with P-bodies and stress granules. These P-bodies stored diverse mRNAs. Granules of two mRNAs transported prior to translation, ASH1-MS2L and OXA1-MS2L, docked with P-bodies. HSP12 mRNA that gave rise to highly elevated protein levels was not observed in granules under these stress conditions. ecd3, pat1 double mutants that are defective in P-body formation were sensitive to mRNAs expressed ectopically from strong promoters. These highly expressed mRNAs showed elevated translation compared with wild-type cells, and the viability of the mutants was strongly reduced. ecd3, pat1 mutants also exhibited increased sensitivity to different stresses. Our interpretation is that sequestration of highly expressed mRNAs in P-bodies is essential for viability. Storage of mRNAs for future regulation may contribute to the discrepancy between the steady state levels of many stress-induced mRNAs and their proteins. Sorting of mRNAs for future translation or decay by individual cells could generate potentially different phenotypes in a genetically identical population and enhance its ability to withstand stress
    corecore