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Abstract
Background: The Comparative Toxicogenomics Database (CTD) is a publicly available resource
that promotes understanding about the etiology of environmental diseases. It provides manually
curated chemical-gene/protein interactions and chemical- and gene-disease relationships from the
peer-reviewed, published literature. The goals of the research reported here were to establish a
baseline analysis of current CTD curation, develop a text-mining prototype from readily available
open source components, and evaluate its potential value in augmenting curation efficiency and
increasing data coverage.

Results: Prototype text-mining applications were developed and evaluated using a CTD data set
consisting of manually curated molecular interactions and relationships from 1,600 documents.
Preliminary results indicated that the prototype found 80% of the gene, chemical, and disease terms
appearing in curated interactions. These terms were used to re-rank documents for curation,
resulting in increases in mean average precision (63% for the baseline vs. 73% for a rule-based re-
ranking), and in the correlation coefficient of rank vs. number of curatable interactions per
document (baseline 0.14 vs. 0.38 for the rule-based re-ranking).

Conclusion: This text-mining project is unique in its integration of existing tools into a single
workflow with direct application to CTD. We performed a baseline assessment of the inter-
curator consistency and coverage in CTD, which allowed us to measure the potential of these
integrated tools to improve prioritization of journal articles for manual curation. Our study
presents a feasible and cost-effective approach for developing a text mining solution to enhance
manual curation throughput and efficiency.

Background
The Comparative Toxicogenomics Database (CTD)
The etiology of many chronic diseases involves interac-
tions between environmental factors and genes and pro-

teins that modulate important physiological processes.
Unfortunately, the mechanisms of actions of most chem-
icals and the etiologies of environmentally influenced dis-
eases are not well understood [1]. We are developing CTD
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(http://ctd.mdibl.org) to promote understanding about
the effects of environmental chemicals on human health
[2,3]. To achieve this goal, we integrate manually curated
data with select public data sets to provide a centralized,
freely available resource for exploring cross-species chem-
ical-gene and protein interactions and chemical- and
gene-disease relationships.

CTD biocurators manually curate three types of data rela-
tionships from the peer-reviewed scientific literature: a)
chemical-gene/protein interactions, b) chemical-disease
relationships, and c) gene/protein-disease relationships
(Figure 1). Currently, CTD provides over 178,000 interac-
tions between 4,980 chemicals and 16,182 genes and pro-
teins in 298 species as well as more than 5,600 chemical-
disease and 8,900 gene/protein-disease relationships. By
integrating curated data among chemicals, genes and dis-
eases, novel transitive relationships can be inferred. CTD
provides over 629,000 inferred gene-disease relationships
and 172,000 inferred chemical-disease relationships that
may be used to develop novel hypotheses about chemical-
gene-disease networks. Additional molecular network and
functional genomics insights can be determined through
the integration of data sets from resources like the Gene
Ontology (GO) [4] and Kyoto Encyclopedia of Genes and
Genomes (KEGG) [5].

CTD is unique among other publicly available chemical,
gene or disease databases, because: a) it focuses on envi-
ronmental chemicals, b) it integrates manually curated
and external data sets to specifically support understand-
ing about the complex connections between chemicals,
genes/proteins and diseases and c) it serves as more than
just a data repository by supporting the generation of
novel hypotheses about the environmental etiologies of
human diseases through novel data integration and anal-
ysis tools [3,6,7]. The batch query tool allows users to
retrieve associated data sets (e.g., GO annotations) for a
list of chemicals, genes or diseases of interest. The Venn-
Viewer tool generates Venn diagrams for associated data
sets for up to three chemicals, genes or diseases of interest
(e.g., associated diseases for arsenic and bisphenol A).
Additional tools in the pipeline will further enhance the
capability of analyzing user-defined data sets in conjunc-
tion with CTD data sets.

CTD curation
The CTD manual curation process is well defined and has
been described previously in detail [2,3]. Here we provide
a brief summary of the process. Journal articles are priori-
tized for curation by chemicals of interest. They are iden-
tified by querying titles and abstracts from MEDLINE
using PubMed [8] and controlled chemical terms and syn-
onyms from the National Library of Medicine's Medical
Subject Headings (MeSH) [9]. Documents are ranked in

date order (the default order from PubMed). Biocurators
read abstracts and full-text articles from which they cap-
ture chemical-gene/protein interactions and disease rela-
tionships.

All curated interactions and relationships are captured
using controlled vocabularies and ontologies to maximize
consistency among biocurators, ensure reproducible data
retrieval by users, and enable integration of CTD data with
other databases. The CTD chemical vocabulary derives
from a modified subset of the chemicals and supplemen-
tary concepts in the "Drugs and Chemicals" category of
MeSH. For genes and proteins, CTD uses official gene sym-
bols and names from the National Center for Biotechnol-
ogy Information's (NCBI) Entrez-Gene database [10].
Where possible Entrez Gene entries representing
orthologs are merged into a single, cross-species gene
entity in CTD (e.g., CTD's AHR gene comprises the Mus
musculus Ahr and Homo sapiens AHR, among others).
Curators use these cross-species genes in CTD to capture
chemical interactions and disease relationships. The CTD
disease vocabulary uses terms from MeSH and OMIM [10].
CTD interaction types are described using terms from a
hierarchical vocabulary of 50 diverse relational terms
(e.g., "binding," "phosphorylation") developed by CTD
curators. Organisms in which chemical-gene interactions
are curated are specified using terms from the Eumetazoa
portion (vertebrates and invertebrates) of the NCBI Tax-
onomy database [10].

CTD curated data relationshipsFigure 1
CTD curated data relationships. Biocurators capture 
three types of data relationships from the literature using 
controlled vocabularies, including chemical-gene interactions, 
and chemical-disease and gene/protein-disease relationships. 
These three relationships generate a chemical-gene/protein-
disease triad that enables users to infer novel connections 
between all three actors.
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Curators are trained by a lead curator, using a manual that
provides detailed instructions for identifying and captur-
ing chemical-gene interactions and disease relationships.
Currently data are captured in Excel spreadsheets that
include the following data: Curator ID, date of curation,
PubMed identification number, interaction, species in
which the interaction was observed, interacting chemical,
interacting gene/protein, associated diseases and author
contact information for follow-up purposes (Figure 2a).
Curated data are then loaded into a database for quality
control review prior to public release. Interactions are cap-
tured in the spreadsheets using a CTD-defined shorthand
or code that is translated into full sentences in the public
web application (Figure 2b).

Curation challenges
High quality manual curation of the scientific literature is
a common bottleneck to populating biological databases.
It is challenging to keep pace with the increasing volume
and scope of published biological data, although CTD
curation efforts have become increasingly efficient. To fur-
ther enhance the efficiency of curation and evaluate our
coverage of the published literature for priority research
areas we embarked on the project described here. The
goals of this project are to: a) generate a baseline analysis
of CTD manual curation; b) develop a prototype text-min-
ing application that would address CTD curation needs by
identifying chemical, gene/protein, and disease terms in
journal articles to rank them effectively for manual cura-
tion, and to provide interactive tools for extraction of
chemical-gene-disease interactions; and c) assess the
future impact of this workflow on curation and data cov-
erage in CTD. CTD staff developed prototype applications
for the document-ranking task in collaboration with
members of the Information Technology Center of the
MITRE Corporation and the University of Colorado
School of Medicine's Center for Computational Pharma-
cology. Based on results presented in this report, future
studies will focus on implementing our text-mining pipe-
line into the CTD manual curation workflow.

Results
To assess the extent to which text mining could improve
the coverage and efficiency of curation, we performed a
baseline study of the current manual curation workflow.
This assessment allowed us to identify where in the work-
flow the prototype could be applied. Two prototypes were
developed and evaluated using a gold standard of manu-
ally curated interactions and relationships from CTD.

Baseline analysis of CTD manual curation
To determine areas of the CTD curation process that could
benefit from text mining, we established baselines for
curation rates and consistency. Three CTD biocurators
were given an identical set of 112 journal articles identi-

fied using PubMed along with terms for three different
chemicals. Biocurators were instructed to curate and
record the time they spent on each article. Results are
reported in Table 1.

On average, biocurators rejected 40% of the 112 journal
articles as not having curatable data. Although the rejected
articles contained both chemical and gene terms, they
were typically rejected because they did not describe an
actual chemical-gene interaction. Rejected articles were
easily identified and on average, biocurators only invested
7% of their time on them (average of 2.5 minutes per
rejected article). Biocurators averaged 21 minutes per
curatable journal article, including those for which the
full text was consulted. As indicated by the differences in
the average time spent per curatable article, curation rates
varied by individual biocurator. The large standard devia-
tions were due to the fact that some journal articles had
only a few interactions and took only a few minutes to
curate, while others had many interactions and took
much longer; four articles in this set had between 100 and
1,000 curated interactions. The longest average time spent
on an individual article from this set was 166 minutes, but
the time investment resulted in curation of a substantial
amount of data. An average of 31 interactions were
extracted from each curated article, at an average rate of
0.8 interactions per minute. These data establish a critical
baseline for future studies in which the impact of integrat-
ing text-mining tools on the CTD manual curation process
will be measured.

Inter-Biocurator Agreement
To determine whether text mining could enhance preci-
sion and recall of data curation, we measured a baseline
for inter-biocurator consistency by calculating how often
biocurators captured the same chemical-gene interactions
from the same journal article using the set of 112 articles
described above.

We performed the analysis in two steps. In Step 1, we
assessed curator consistency about whether or not to
curate a particular article. Table 2 demonstrates that the
curators agreed on the disposition of 86/112 articles
(77%) and had an average pair-wise agreement of 85%. In
Step 2, we compared agreement between each curator and
a "gold standard" set of interactions, averaged over all the
documents curated by that curator. To prepare the "gold
standard," the lead biocurator validated any interaction
where curators disagreed, labeling each interaction as cor-
rect or incorrect for each curated paper. This set of cor-
rectly labeled interactions enabled us to compare each
curator's results to the gold standard and to calculate pre-
cision and recall on a per-document basis; precision and
recall were calculated only for those documents curated
by that curator. The results (Table 3) showed that 91% of
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the interactions extracted by CTD biocurators were judged
by the lead curator to be correct (average precision =
0.91). Average recall was 0.71.

Assessing performance of prototype text-mining 
applications
Assessment of the potential value of our prototype text-
mining tools focused on: a) effectiveness of identification
of "actors" in abstracts of biomedical journal articles
where an actor was defined as a chemical, gene/protein or
disease of relevance to the CTD project; and b) effective-
ness of document ranking to help prioritize journal arti-
cles for manual curation.

Actor Identification
Tools for identifying chemical (OSCAR 3 and MetaMap;
[11-13]), gene/protein (ABNER and MetaMap; [14]) and
disease (MetaMap) terms were identified and integrated
into a prototype workflow. Experiments described here
were compared against a set of manually curated data
from 1,600 journal articles in CTD for 10 chemicals. The
effectiveness of the text-mining tools was evaluated to
determine the proportion of manually curated actors that
were successfully identified (i.e., chemicals, genes, dis-
eases participating in CTD curated interactions for those
documents). Overall the tools identified 80% of curated
actors (74% for curated gene actors, 94% for curated

Documentation of curated dataFigure 2
Documentation of curated data. a) Currently curated data are captured using controlled vocabularies in Excel spread-
sheets that include: Curator ID, date of curation, PubMed identification number, interaction (designated using a CTD coding 
schema), species in which the interaction was observed, interacting chemical, interacting gene/protein, associated diseases (not 
shown) and author contact information for follow-up purposes (not shown). b) Codes used to capture interactions are trans-
lated into readable sentences for the public web application.

Table 1: CTD manual curation metrics

Data Biocurator 1 Biocurator 2 Biocurator 3 Average

Total no. articles examined 112 112 112 112
No. articles curated (%) 57 (51) 74 (66) 69 (62) 67 (60)
No. articles rejected (%) 55 (49) 38 (34) 43 (38) 45 (40)
Time spent reviewing articlesa 1331 893 2263 1496
Time spent on curatable articles (%) 1198 (90) 822 (92) 2133 (94) 1384 (93)
Time spent on rejected articles (%) 133 (10) 71 (8) 130 (6) 111 (7)
Curation rate (+/- SD) b 21.0 (31.1) 11.1 (13.1) 30.9 (52.9) 20.7
Rejection rate (+/- SD) c 2.4 (3.4) 1.9 (3.1) 3.0 (4.4) 2.5
Total data extractedd 828 2330 3039 2066
Data per curated article (+/- SD) 14.5 (34.4) 31.5 (143.7) 44.0 (209.8) 30.8
Data extraction rate (+/- SD) 0.5 (0.3) 1.4 (1.7) 0.6 (0.6) 0.8

aAll times and rates were recorded or calculated in minutes
bCuration rate = Time spent per curated article. SD = standard deviation.
cRejection rate = Time spent per rejected article.
Total data extracted = total number of chemical-gene, chemical-disease, and gene-disease interactions.
dData extraction rate = macro-average of individual rates of the number of interactions for each curatable article.
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chemical actors, and 51% for curated disease actors) from
the 1600 manually curated set of articles ('gross actor
identification ratio'). Because the text-mining tools were
limited to searching only the titles and abstracts of journal
articles, whereas much of the manually curated data
derived from the full text, this calculation understated the
effectiveness of the tools. Consequently, a second ratio,
the adjusted actor identification ratio, was developed to
account for this added complexity. Using the adjusted
ratio 92% of the actors that were manually curated from
the titles and abstracts of journal articles were identified
by the text-mining tools (93% for curated gene actors,
99% for curated chemical actors, and 80% for curated dis-
ease actors). The average response times of the ABNER
and OSCAR3 text-mining tools were each approximately
one second per abstract; the MetaMap tool was 1 minute,
17 seconds.

Document Ranking
A goal of a text-mining tool for CTD was to identify rele-
vant journal articles and prioritize them for manual cura-
tion. There were two important factors for gauging the
effectiveness of ranking journal articles: a) the extent to
which the system identified and ranks relevant documents
(i.e., those containing one or more curatable interaction),
more highly than non-relevant documents; and b) the
extent to which the system ranked documents that were
information-rich more highly than those that were not
(e.g., a document containing 20 curatable interactions
should be ranked more highly than a document contain-
ing only a single curatable interaction). These two issues
are critical because many times there are more documents
available for a given area of interest than can be realisti-
cally manually curated. Currently, we impose cut-off crite-
ria available through the PubMed query interface (e.g.,
publication date). Instead we would like to use a more
informed ranking method to ensure that we are achieving
more complete coverage of curated data in CTD while also
optimizing biocurator productivity. Mean average preci-
sion (MAP) was used to quantify the ability of a ranking
system to rank relevant documents more highly than non-
relevant documents and a correlation coefficient (Pear-
son's product moment correlation coefficient, or R) was
used to correlate the ranking of articles with data richness.

The text-mining study found that the MAP was 63% for
the baseline case (the document ordering from the origi-
nal query to PubMed); this rate is actually quite high and
reflects the skill of the CTD biocurators in effectively
employing the PubMed search capabilities. Nonetheless,
the text-mining tools improved significantly upon the
default ordering: MAP increased to 72% for the Lucene-
based application, and 73% for the rule-based application
- an improvement of almost 16% over the baseline case.
The correlation between PubMed ordering of documents
and the richness of curated interactions was 0.14. Correla-
tions more than doubled with the text-mining tools: 0.32
for the Lucene ranking method and 0.38 for the rule-
based ranking method. Figure 3 illustrates the important
implications of improved ranking on the resulting curated
data. When ranked using the rules-based application vs.
PubMed ordering (control case), curation of the top 10%
of the 1,600 articles would result in 426 more chemical-
gene interactions, including 82 additional genes, 81 addi-
tional chemicals and 5 more diseases.

The caveat to these results is the tools "overtagged" the
articles: only 36% of the tagged actors participated in
curated interactions (38% of genes, 37% of chemicals and
11% of disease terms); altogether, 64% of the tagged
terms had no curatable interactions associated with them;
we describe these as 'false positive actor mentions'. There
are a number of reasons for these false positives, including
legitimate mentions of genes/disease/chemicals that are
not involved in a curatable interaction in the paper; gene
names that are synonyms of chemicals (e.g., ROS, PGE2);
and many short names or symbols (e.g., AS) that are syn-
onyms of genes (e.g., HLA-B) and chemicals (e.g., ammo-
nium trichloro(dioxoethylene-O, O'-)tellurate) and are
confusable with commonly used adverbs, prepositions or
conjunctions in English. In order to create a tool that cura-
tors can productively use to extract interactions from arti-
cles, it will be important to reduce these false positive
actor mentions.

Indomethacin case study
Based on the promising results for actor identification and
document ranking described above, we evaluated the
potential for our rule-based text-mining tool to identify

Table 2: Degree of consensus to curate

Biocuratorsa

1+2+3
Biocuratorsa

1+2
Biocuratorsa

2+3
Biocuratorsa

1+3
Pair-wise average

No. articles agreed to curate 52 57 65 52 58
No. articles agreed to reject 34 38 34 38 37
No. articles with agreement 86 95 99 90 95
No. articles with disagreement 26 17 13 22 17
No. articles examined 112 112 112 112 112
Consensus (%) 0.77 0.85 0.88 0.80 0.85

aNumbers represent each of the three CTD biocurators.
Page 5 of 12
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:326 http://www.biomedcentral.com/1471-2105/10/326
and rank a another test set of articles for curation. To do
this, we retrieved data from MEDLINE for indomethacin,
a chemical for which we had previously curated 73 jour-
nal articles. This time we used a broader PubMed query to
evaluate the performance of our text mining tools in com-
parison with our existing curated data for this chemical.
We identified 1,138 journal articles of which our 73
curated articles were a subset. Based on identification of
actors by our text-mining actor recognition tools, we fil-
tered the 1,138 results to a set of 354 journal articles that
contained gene/protein actors not currently associated with
indomethacin in CTD. These 354 journal articles were then
ranked and reviewed by our lead biocurator who deter-
mined that 167 (47%) articles contained curatable data
for indomethacin. Notably, there was a strong correlation
between the ranking of these articles by the text-mining
tools and whether the articles contained curatable data
(Figure 4). This correlation was not seen with our previous
method for ordering articles for curation, namely the
descending order of PubMed identifiers, which typically
reflect publication date. Overall, MAP improved from
54% under the baseline case to 68% under the rule-based
case. Subsequent curation of these 167 articles indicated
that text mining effectively identified articles with novel
data for indomethacin including 72 genes, 192 chemical-
gene interactions, and 60 diseases. These results have
important implications for future implementation in our
curation process regarding the potential of text mining to
help assess the existing scope of curated data in CTD,
identify novel data for curation and inclusion in CTD, and
effectively prioritize documents for curation.

Discussion and Conclusion
A major goal of CTD is supporting development of novel
hypotheses about the complex relationships between
chemicals, genes/proteins and diseases. In most cases,
such complex relationships have not yet been elucidated.
To support hypothesis development we have taken a
reductionist approach by curating individual relation-
ships and integrating them in ways that have the potential
to reveal previously unidentified, complex connections.

As with other manually curated resources, these efforts are
challenged by the increasing scope and volume of data
being published. In this study we explored whether we
could find a solution that would merge manual curation,
which is highly accurate but time consuming, with text
mining, which is scalable but error-prone [15].

There are still relatively few examples of working tools
inserted into a biocuration pipeline, despite a number of
assessments of text mining applied to biomedical curation
[16]. The Textpresso software [17-19] has been applied
successfully to a number of model organism databases, as
well as to other kinds of curated databases. Textpresso
uses multiple ontologies to create lists of terms that can be
identified in running text. Users can construct their own
search using these ontologies. Other tools in active use are
ProMiner [20] and RLIMS-P [21], which extract from arti-
cles gene/protein terms and phosphorylation events,
respectively. The European Bioinformatics Institute's
Whatizit software [22] provides, among other things, a
retrieval/search engine for PubMed abstracts, identifying
molecular biology terms in a number of categories and
linking them to publicly available databases. There are
other similar special purpose search tools, such as iHOP
[23] or Chilibot [24] that focus on identifying specific
types of biological entities (genes, proteins) and their rela-
tions. However, none of these solutions addressed the
specific needs of the CTD curation workflow.

We report here a novel approach to building a text-mining
solution for our publicly available database that began
with establishing baseline metrics for our current curation
process. From the results of this analysis we identified
areas in which text mining could add value to the CTD
data curation workflow. We determined that identifica-
tion of journal articles from MEDLINE for potential cura-
tion yields a large percentage (40%) of articles that are not
curatable, but that rejection of these journal articles con-
sumed a relatively small percentage of biocurator time
(7%). These results suggest that biocurator identification
of relevant journal articles is efficient; however, more

Table 3: Precision, recall, and f-measure of CTD manual curation

Dataa Biocurator 1 Biocurator 2 Biocurator 3 Averagee

No. articles examined 53 68 65 62
Precisionb 0.90 0.97 0.86 0.91
Recallc 0.62 0.79 0.71 0.71
F1-measured 0.70 0.85 0.75 0.77

aOnly curated chemical-gene interactions were analyzed (disease interactions were not considered); consequently, these numbers differ slightly 
from those reported in Table 2.
bPrecision = Correct interactions for individual biocurator/Total interactions for individual biocurator.
cRecall = Correct interactions for individual biocurator/Total correct interactions from all biocurators.
dF1-measure is the harmonic mean of precision and recall = (2 × Precision × Recall)/(Precision + Recall). Precision, Recall, and F1-measure were 
macro-averaged over the set of articles curated by that curator.
eCalculated using data from three biocurators.
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effective identification and ranking of relevant journal
articles by a text-mining application would further maxi-
mize productivity and increase the quantity of data
curated in CTD. We performed inter-biocurator agree-
ment studies to determine how well biocurators agreed
when curating an article, to provide an upper bound for
performance of text mining. We calculated that precision
for curated actors was high (average, 0.91) and recall was
lower (average, 0.71). This is consistent with results
reported by Camon et al. [25], where an inter-curator
agreement study for GO annotation of proteins showed
high precision (few incorrect GO annotations, 94%), but
variation in the depth or exhaustiveness of curation, lead-
ing to missing annotations and lower recall (72%).

Based on our curation needs assessment, we developed
two prototype text-mining applications. One application
was built using the Lucene search engine API [26] whereas
the other was rule-based. Both applications integrated a
set of publicly available actor identification tools for
chemicals, genes/proteins and diseases. We leveraged the
large corpus of curated data from CTD to construct a gold
standard data set that included over 6,000 curated actors
from 1,600 journal articles describing 10 different chemi-
cals. This gold standard data set was used to examine the
potential value of these text-mining applications to
enhance CTD curation.

The two performance areas of particular interest to us
were: a) how effectively the actor recognition tools identi-
fied terms of interest (chemicals, genes/proteins, diseases)
in journal articles; and b) how reliably the applications
could rank documents such that ranking could assist with
prioritizing articles for manual curation. Actor identifica-
tion was very effective (80% of all curated actors identi-
fied), particularly when adjusted for actors that seemed to
be found only in the abstracts of journal articles from our
control data set (92%). Interestingly, text mining and
manual curation share many of the same challenges, not
the least of which is gene name identification and incon-
sistency in nomenclature use [15]. Given these challenges,
our actor identification results were particularly gratifying.

The new document ranking strategies showed great prom-
ise for effectively identifying information rich, relevant
journal articles. Based on CTD curation experience, we
identified a range of criteria against which to rank docu-
ments. Both ranking strategies effectively improved the
ranking over the baseline case, although our rule-based
application slightly outperformed Lucene in every metric.
In addition, the rule-based application enabled us to exer-
cise greater control over document scoring and ranking
because it was entirely customized for CTD curation
unlike Lucene, which is customizable to an extent, but
was designed to be general-purpose. Similar results were
found in a new test case for indomethacin journal articles,
where we demonstrated that the text-mining applications
ranked articles with curatable data more highly that those
without curatable data. This correlation is a significant
finding because it shows that these tools will allow us to
cast a wider net when identifying potential journal articles
for curation because we will be able to prioritize articles
for curation more knowledgeably and maximize the pro-
ductivity of biocurators by presenting them with a subset
of information-rich journal articles that are more likely to
contain curatable data (Figure 3). Specifically, our rules-
based application will enable us to more effectively iden-
tify information-rich articles and thereby capture more
data from an equivalent number of articles. Effective actor
identification will also enable better assessment of our
data coverage for particular chemicals, genes, or diseases
and consequently identify data that may be missing or in
need of updating in CTD using an approach similar to our
indomethacin study. Finally, although we might maxi-
mize information retrieval by mining the full text of jour-
nal articles rather than just abstracts, our indomethacin
results corroborate a recent report indicating that review-
ing abstracts as an indexing unit may be comparable to
reviewing the full text of articles [27]. Therefore, at least
for ranking, attempting to overcome the many additional
challenges associated with mining full-text articles may
not yield substantially better results than mining
abstracts.

Rules-based ranking of articles enhances yield of curated dataFigure 3
Rules-based ranking of articles enhances yield of 
curated data. When ranked using the rules-based applica-
tion vs. PubMed ordering (control case), the top 10% of arti-
cles would result in an increased yield of curated data; 
specifically 426 more chemical-gene interactions, comprising 
82 additional genes, 81 additional chemicals and 5 more dis-
eases.
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We are greatly encouraged by the results of our prototype
text-mining applications. Our results demonstrate that it
is possible to integrate "off-the-shelf" tools to provide sig-
nificant value to a biocuration workflow. We applied a
method based on inter-biocurator agreement of manual
annotation to identify where to insert text-mining tools
into the curation workflow to maximize pay-off. We were
able to assemble quite rapidly a text-mining pipeline by
using freely available entity recognition software; we

developed two ranking strategies and evaluated their per-
formance. We estimate that the actual tool acquisition
and integration took only a few staff weeks; the bulk of the
time on the project was spent in creation of a baseline for
comparison, and in evaluation of the performance of the
two ranking approaches (Lucene and the rule-based
approach). While we chose entity recognition systems
based on the specific CTD application, we believe that this
approach can be extended both to handle other parts of
the CTD curation pipeline, and to other curation applica-
tions. To further improve our results, we will evaluate the
impact of optimizing weighting criteria using multivariate
analysis; modifying requirements for retrieving actor
terms (e.g., length of words, removal of common confus-
able English words); and using additional criteria includ-
ing inclusion of CTD action terms in the search for actors,
and extending analysis to the full text of journal articles.
We will also look carefully at certain aspects of the EBI's
Whatizit software. Although Whatizit employs all of the
major recognition tools that we selected for integration
into our prototypes, we will specifically evaluate their dis-
ease tools in an attempt to mitigate the extended response
times we experienced during MetaMap processing.

Based on our results we are planning modifications to our
existing manual curation process that are illustrated in
Figure 5. MEDLINE will continue to be searched using
PubMed for priority chemical terms and their synonyms.
Resulting journal articles will be text-mined using actor
identifiers for chemicals, genes and diseases, as well as
action terms. These actors will be cross-referenced with
corresponding vocabularies in CTD. Corroborated actors
will be highlighted, and journal articles will be ranked
and loaded into the curation database. Biocurators will
review and curate highlighted journal articles using an
online curation application with real-time quality control
measures. Curated data will be loaded into our produc-
tion database on a real-time basis, and made available to
the public monthly. New baseline assessments will be
made to accurately determine the impact of incorporating
text mining with the CTD curation process.

This report provides a compelling demonstration that text
mining for the biological literature has matured to the
point where it is feasible and cost-effective to insert text-
mining tools into the curation pipeline to improve both
curation throughput and quality. Our approach, consist-
ing of baseline creation, tool integration and evaluation
can be readily generalized to other applications both
within CTD and for other curated databases.

Methods
CTD manual curation analysis
CTD data is curated by three biocurators, all of whom
have a Ph.D. in the biological sciences, have been with
CTD for more than one year, have undergone thorough

Text mining improves the ranking of journal articles for cura-tionFigure 4
Text mining improves the ranking of journal articles 
for curation. A test set of 354 articles slated for curation 
were first ranked by two different methods: (a) via each arti-
cle's PubMed identification number in descending order 
(which typically reflects the publication date from newest to 
oldest paper) and (b) via the rank order determined by our 
rule-based text-mining application. The articles were then 
reviewed by a biocurator who determined that 167 of the 
papers contained relevant data (curated, black bars) while 
187 of them did not (rejected, white bars). For presentation, 
the 354 articles are grouped into progressive quartiles (1st, 
2nd, 3rd, and 4th) each containing 89 papers. The overall 
percent of total curated papers (167) vs. rejected papers 
(187) are shown distributed over each quartile. The text-
mining tool (b) effectively ranked the more relevant papers 
into the first and second quartile and the less relevant papers 
to the third and fourth quartile compared to the less 
informed criteria of PubMed identification numbers (a).
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training in database policies, and had prior experience as
biocurators for other databases, making them highly com-
petent and experienced professionals. To assess a baseline
analysis of CTD curation, the three biocurators were pre-
sented with the same list of 112 journal articles identified
from MEDLINE using PubMed, and instructed to curate
them at their normal pace according to CTD curation pol-
icies and record the time spent on each article. They read
the title and abstract of each article and had the option to
read and curate the full text. The full text was generally
consulted to resolve ambiguities in the abstracts (e.g., offi-
cial gene symbol, species). Assigning the same journal
articles to all three biocurators provided replicates for data
analysis to identify fluctuations in curation rates and cura-
tion variability sometimes observed between data sets for
different chemicals. Journal articles were identified using
our standard protocol, which consisted of iterative
PubMed queries that included: a) a target chemical, b)
terms such as "gene" OR "mRNA" to enrich for journal
articles that co-mention a chemical and gene [2], and c)
recent publication date restrictions to retrieve data sets
that are manageable to query and more frequently use
official gene nomenclature. The baseline assessment
occurred during December 2008. Two of the biocurators
were unaware that they were curating the same set of arti-
cles. Curated chemical-gene interactions from the 112
articles were evaluated by the lead biocurator for correct-
ness (correct chemical-gene interaction from the correct
species). Data precision was calculated in the usual way as
the number of correct interactions contributed by a cura-
tor divided by the number of interactions returned by that
curator. To calculate data recall, we combined correct
interactions returned by any of the curators to create a set
of possible correct interactions for each document; these
were then validated by the lead curator to create the gold
standard. Recall was calculated in the usual way as the
number of correct interactions returned by a curator for a
given document, divided by the number of possible cor-
rect interactions for that document. These per-document
precision and recall figures were then averaged across the
set of documents curated by each curator, to derive a
(macro-averaged) precision and recall per curator, as well
as f-measure.

Text-mining applications and analysis
Text-mining applications
We assembled two document ranking applications. Both
were built in a modular fashion, utilizing publicly availa-
ble tools for components of the workflow. One applica-
tion was built using the Lucene search engine API [26].
The other application was a rule-based system constructed
to search input documents for certain features and incre-
ment a weighted score for every feature found. Both appli-
cations made use of three publicly available named entity
recognition systems, which are computer applications

that locate mentions of some semantic class or classes of
data types in texts. For example, given an input of "analy-
sis of glutaredoxin mutant strains revealed that only those
lacking the grxA gene are impaired in arsenic resistance"
[28] a gene/protein named entity recognition system
would locate the strings glutaredoxin and grxA, whereas a
chemical named entity recognition system would locate
the string arsenic.

Since CTD targets genes/proteins, chemicals, and diseases
for curation, we selected three named entity recognition
systems that were optimized for these specific semantic
classes.

• OSCAR 3 was used to identify chemicals [11,12].
OSCAR 3 was selected because of the very small
number of available chemical named entity recogni-
tion systems, it covers the broadest range of chemicals,
and also because when possible, it returns a normal-
ized identifier for chemicals that it locates in text.

• ABNER was primarily used to identify genes/proteins
[14]. ABNER is a popular gene/protein named entity
recognition system both because it achieves reasona-
ble performance and because it is well-engineered,
making it easy to incorporate into complex text-min-
ing applications. Other alternatives exist, such as Ling-
Pipe and BANNER [29].

• MetaMap was used to identify diseases [13]. Meta-
Map was selected because it is the industry standard
for locating mentions of clinical concepts, including
diseases. We also note that MetaMap has been success-
fully used in genomics-domain applications in a
number of instances [30]; in our case, it was also a use-
ful supplement to both ABNER for locating gene/pro-
tein mentions, and to OSCAR 3 for chemical
recognition.

Each of the entity recognition systems were integrated into
the individual applications as-is. The entity recognition
systems were used in the following order: genes, chemi-
cals, and diseases. For actor identification reporting pur-
poses, each tool was evaluated independently, i.e., if the
same entity were recognized by both the gene and chemi-
cal entity recognition systems, and the entity was actually
a curated chemical, correct recognition would be counted
for chemical recognition system actor identification
reporting.

One document ranking application was built using the
Lucene search engine API [26]. Lucene was selected
because its clean interface, well-engineered back end, and
good performance have made it one of the most common
tools used for building information retrieval engines (e.g.,
Page 9 of 12
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Wikipedia). It functions well enough that it is typically
used out-of-the-box to establish a performance baseline
for biomedical information retrieval systems.

The other application was a rule-based system constructed
to search input documents for certain features (e.g., gene,
chemical, and disease names), and increment a weighted
score for every feature found. In contrast to Lucene, which
ranks documents as more or less likely to be relevant to
the given information need using a formula based on the
relative rarity of these features, the rule-based system
ranks them by a more finely controllable scoring formula.
Rule-based systems can perform very well for document
classification problems, and rating a document as relevant
to an information need or not can be considered as a kind
of document classification task.

Expert curated data set
Approximately 1,600 journal articles previously manually
curated for CTD were used as a baseline data set, or "gold
standard," to evaluate the performance of our prototype
text-mining applications. These documents were a subset
of the approximately 25,000 documents reviewed by
biocurators since CTD manual curation began in 2005.
The 1,600 documents contained 6,664 curated actors,
including chemicals, genes, and diseases and represented
data for 10 different priority chemicals: urethane, aspar-
tame, 2-acetylaminofluorene, cyclophosphamide,
indomethacin, aniline, raloxifene, amsacrine, phenacetin,
and doxorubicin.

Evaluation of actor identification
Our information retrieval applications were used to iden-
tify actors in the titles and abstracts of journal articles
within our control data set. Tagged terms identified by the
applications were assessed for relevancy by comparing
against CTD controlled vocabularies (including syno-
nyms) for chemicals, genes and diseases. This had the
effect of collapsing all synonymous mentions of an actor
within a single document to the CTD defined term for that
actor. Tagged terms not found within the CTD vocabular-
ies were eliminated from subsequent analysis and rank-
ing. Effectiveness of actor identification was evaluated by
calculating the gross and adjusted actor identification
ratios. We calculated the gross actor identification ratio as
the number of curated actors (or their synonyms) identi-
fied by the text-mining tools divided by the number of
curated actors in CTD. We also calculated 'adjusted actor
identification ratio' to take into account the fact that the
text-mining tools only searched titles and abstracts. This
was calculated as the number of curated actors (or their
synonyms) identified by the text-mining tools divided by
the number of curated actors whose terms or synonyms
were found in the abstract. However, this measure is
imperfect in that the adjustment will overlook a phrase in

an abstract such as "...causes cancers of the breast..."
which could be curated to the term "breast neoplasms" by
a biocurator, but would not be identified by the tools
because "cancers of the breast" is not a synonym for
"breast neoplasms". In this case, the adjusted actor
denominator will incorrectly assume that the mention is
not in the abstract, leading to a potential overestimate of
performance. Both gross and adjusted ratios are calculated
using macro-averaging - averaging the ratios for each arti-
cle rather than the aggregate raw actor counts. This
method is used to moderate the impact of large microar-
ray-based journal articles for which abundant data is often
only available in the full text.

Document ranking
A goal of text mining development for CTD curation was
ranking documents in a manner that would help priori-
tize journal articles for manual curation. The curation
group established ranking criteria. Each criterion was
weighted in a way that seemed logical based on collective
curation experience and optimized the mean average pre-
cision (MAP) score of the articles. The same basic ranking
criteria were used for both the Lucene-based and the rule-
based applications. Generally, documents that met the
following criteria were weighted more highly than docu-
ments that did not:

• Target chemical mentioned in abstract title;

• Frequency with which the target chemical was men-
tioned in abstract;

• Target chemical was mentioned in first 2 sentences;

• Target chemical was mentioned in the last 2 sentences;

• Target chemical was included in PubMed MeSH annota-
tion;

• Abstract was published in one of the following high pri-
ority journals: Nature, Science, Environmental Health
Perspective, Toxicological Sciences, Cell, Journal of Bio-
logical Chemistry;

• Abstract referred to microarray data (e.g., "microarray"
was mentioned in the abstract);

• Frequent mention in the abstract of specific genes in the
CTD controlled vocabulary;

• Co-occurrence of action terms and actors in the same
sentence.

The formulas used for document ranking are provided as
Additional file 1.
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MAP and correlation coefficients were used to evaluate the
effectiveness of ranking and weighting of criterion. MAP
measures the ability of text-mining tools to effectively
identify and rank relevant documents by ranking those
documents that appear to have relevant interaction data
more highly than those that do not. It is calculated as the
average of the precision at each point in the list of
returned documents where the document at that point
was relevant. The overall average precision was calculated
as the average across the sets of documents for all 10 test
chemicals [31]. A document was considered relevant if it
contained curatable data. Correlation coefficients (Pear-
son's product moment correlation coefficient, or R) that
measured the correlation of text-mining document rank-
ing to the document ranking based on interaction rich-
ness (i.e., the number of interactions that were curated)
were calculated for each ranking method and were
defined by the number of curated interactions associated
with articles.

Refining Actor Identification
A planned product of a text-mining system is an online
curation application that will present abstracts to biocura-

tors in which relevant actors are highlighted and hyper-
linked back to CTD. In order to hyperlink a text-mined
term, the text-mining tool would have to identify it; the
term must exist verbatim in the abstract; and the term, or
a synonym of the term, must exist among the respective
CTD's controlled vocabulary. We assessed a 'false positive
ratio' for our control data set and defined this ratio as the
number of term mentions identified by the text-mining
tools that were not actually involved in a curated interac-
tion, divided by the total number of hyperlinked actors.

List of Abbreviations Used
The following abbreviations were used herein: API: refers
to application programming interface; CTD: refers to the
Comparative Toxicogenomics Database; GO: refers to the
Gene Ontology; GOA: refers to the Gene Ontology Anno-
tation database; KEGG: refers to the Kyoto Encyclopedia
of Genes and Genomes; MAP: refers to mean average pre-
cision; MeSH: refers to Medical Subject Headings; NCBI:
refers to the National Center for Biotechnology Informa-
tion; OMIM: refers to the Online Mendelian Inheritance
of Man.

Future CTD manual curation workflowFigure 5
Future CTD manual curation workflow. Articles will continue to be identified for curation using PubMed and chemical 
terms of interest. Articles will be text mined using chemical (OSCAR 3), gene (ABNER) and disease (MetaMap) identifiers as 
described. Actors identified by text mining will be matched against vocabularies in CTD and journal articles without matches 
will be removed. Remaining journal articles will be ranked and loaded into the CTD curation database. Biocurators will curate 
or reject journal articles using an online application tool that is integrated with the CTD curation and production databases. 
Curated data will be approved and loaded into the CTD production database.
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