104 research outputs found

    Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary

    Get PDF
    To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).

    Societal Costs and Benefits of Treatment with Trastuzumab in Patients with Early HER2neu-Overexpressing Breast Cancer in Singapore

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trastuzumab has revolutionized the way we treat early Her2Neu-positive breast cancer, as it significantly improves disease-free and overall survival. Little is known about the societal costs and benefits of treatment with trastuzumab in the adjuvant setting in Southeast Asia.</p> <p>Methods</p> <p>Societal costs (benefits) were estimated as the sum of direct and indirect costs minus benefits in the base case. Direct costs were derived from 4 treatment centers in Singapore (2 private and 2 public, comprising 60-70% of all patients with cancer seen in the island-nation); indirect costs were assessed as the loss of productivity caused by the disease or treatment. Benefits to society were based on extra years of productivity, as measured by GNI per capita, resulting from the quality adjusted life-years (QALYs) saved with the use of trastuzumab as determined in the models by Kurian, Liberato and Garrison.</p> <p>Results</p> <p>Incremental costs in Singapore, in 2005 US dollars, were 26,971.05.AverageCostperQALYwas26,971.05. Average Cost per QALY was 19,174.59 (Median: 18,993.70).Costs(benefits)tosocietyrangedfromacostof18,993.70). Costs (benefits) to society ranged from a cost of 79.42 to a benefit of 9,263.06,dependingonthemodelused(Averagebenefit:9,263.06, depending on the model used (Average benefit: 4,375.89, Median 3,944.03).Sensitivityanalysisrangedfromacostof3,944.03). Sensitivity analysis ranged from a cost of 10,685.00 to a Benefit of US$17,298.79</p> <p>Conclusions</p> <p>Treatment with adjuvant trastuzumab is likely to generate net societal economic benefits in Singapore. Nevertheless, the lower range of possible outcomes does not refute the possibility that treatment may actually generate costs. These costs however clearly fall within the usual range of acceptable cost-effectiveness.</p

    Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer

    Get PDF
    Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies

    Nipple aspiration and ductal lavage in women with a germline BRCA1 or BRCA2 mutation

    Get PDF
    INTRODUCTION: The aim of this study was to collect serial samples of nipple aspirate (NA) and ductal lavage (DL) fluid from women with germline BRCA1/2 mutations in order to create a biorepository for use in identifying biomarkers of breast cancer risk. METHODS: Between March 2003 and February 2005, 52 women with germline BRCA1 or BRCA2 mutations (median age 43 years, range 27 to 65 years) were scheduled for six-monthly NA, DL and venesection. DL was attempted for all NA fluid-yielding (FY) and any non-FY ducts that could be located at each visit. RESULTS: Twenty-seven (52%) women were postmenopausal, predominantly (19/27) from risk reducing bilateral salpingo-oophorectomy (BSO). FY ducts were identified in 60% of all women, 76% of premenopausal women versus 44% of postmenopausal (P = 0.026). Eighty-five percent of women had successful DL. Success was most likely in women with FY ducts (FY 94% versus non-FY 71% (P = 0.049). DL samples were more likely to be cellular if collected from FY ducts (FY 68% versus non-FY 43%; P = 0.037). Total cell counts were associated with FY status (FY median cell count 30,996, range 0 to >1,000,000 versus non-FY median cell count 0, range 0 to 173,577; P = 0.002). Four women (8%) had ducts with severe atypia with or without additional ducts with mild epithelial atypia; seven others had ducts with mild atypia alone (11/52 (21%) in total). Median total cell count was greater from ducts with atypia (105,870, range 1920 to >1,000,000) than those with no atypia (174, 0 to >1,000,000; P ≤ 0.001). CONCLUSION: It is feasible to collect serial NA and DL samples from women at high genetic risk of breast cancer, and we are creating a unique, prospective collection of ductal samples that have the potential to be used for discovery of biomarkers of breast cancer risk and evaluate the ongoing effects of risk reducing BSO. DL cellular atypia was not predictive of a current breast cancer and longer follow up is needed to determine whether atypia is an additional marker of future breast cancer risk in this population already at high genetic risk of breast cancer

    ART: A machine learning Automated Recommendation Tool for synthetic biology

    Get PDF
    Biology has changed radically in the last two decades, transitioning from a descriptive science into a design science. Synthetic biology allows us to bioengineer cells to synthesize novel valuable molecules such as renewable biofuels or anticancer drugs. However, traditional synthetic biology approaches involve ad-hoc engineering practices, which lead to long development times. Here, we present the Automated Recommendation Tool (ART), a tool that leverages machine learning and probabilistic modeling techniques to guide synthetic biology in a systematic fashion, without the need for a full mechanistic understanding of the biological system. Using sampling-based optimization, ART provides a set of recommended strains to be built in the next engineering cycle, alongside probabilistic predictions of their production levels. We demonstrate the capabilities of ART on simulated data sets, as well as experimental data from real metabolic engineering projects producing renewable biofuels, hoppy flavored beer without hops, and fatty acids. Finally, we discuss the limitations of this approach, and the practical consequences of the underlying assumptions failing

    Advances of genomic science and systems biology in renal transplantation: a review

    Get PDF
    The diagnosis of rejection in kidney transplant patients is based on histologic classification of a graft biopsy. The current “gold standard” is the Banff 97 criteria; however, there are several limitations in classifying rejection based on biopsy samples. First, a biopsy involves an invasive procedure. Second, there is significant variance among blinded pathologists in the interpretation of a biopsy. And third, there is also variance between the histology and the molecular profiles of a biopsy. To increase the positive predictive value of classifiers of rejection, a Banff committee is developing criteria that integrate histologic and molecular data into a unified classifier that could diagnose and prognose rejection. To develop the most appropriate molecular criteria, there have been studies by multiple groups applying omics technologies in attempts to identify biomarkers of rejection. In this review, we discuss studies using genome-wide data sets of the transcriptome and proteome to investigate acute rejection, chronic allograft dysfunction, and tolerance. We also discuss studies which focus on genetic biomarkers in urine and peripheral blood, which will provide clinicians with minimally invasive methods for monitoring transplant patients. We also discuss emerging technologies, including whole-exome sequencing and RNA-Seq and new bioinformatic and systems biology approaches, which should increase the ability to develop both biomarkers and mechanistic understanding of the rejection process

    Tolerability of breast ductal lavage in women from families at high genetic risk of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ductal lavage (DL) has been proposed as a minimally-invasive, well-tolerated tool for obtaining breast epithelial cells for cytological evaluation of breast cancer risk. We report DL tolerability in <it>BRCA1/2 </it>mutation-positive and -negative women from an IRB-approved research study.</p> <p>Methods</p> <p>165 <it>BRCA1/2 </it>mutation-positive, 26 mutation-negative and 3 mutation unknown women underwent mammography, breast MRI and DL. Psychological well-being and perceptions of pain were obtained before and after DL, and compared with pain experienced during other screening procedures.</p> <p>Results</p> <p>The average <b><it>anticipated </it></b>and <b><it>experienced </it></b>discomfort rating for DL, 47 and 48 (0–100), were significantly higher (<it>p </it>< 0.01) than the <b><it>anticipated </it></b>and <b><it>experienced </it></b>discomfort of mammogram (38 and 34), MRI (36 and 25) or nipple aspiration (42 and 27). Women with greater pre-existing emotional distress experienced more DL-related discomfort than they anticipated. Women reporting DL-related pain as worse than expected were nearly three times more likely to refuse subsequent DL than those reporting it as the same or better than expected. Twenty-five percent of participants refused repeat DL at first annual follow-up.</p> <p>Conclusion</p> <p>DL was anticipated to be and experienced as <b>more </b>uncomfortable than other procedures used in breast cancer screening. Higher underlying psychological distress was associated with decreased DL tolerability.</p

    Regulation of Hemocytes in Drosophila Requires dappled Cytochrome b5

    Get PDF
    A major category of mutant hematopoietic phenotypes in Drosophila is melanotic tumors or nodules, which consist of abnormal and overproliferated blood cells, similar to granulomas. Our analyses of the melanotic mutant dappled have revealed a novel type of gene involved in blood cell regulation. The dappled gene is an essential gene that encodes cytochrome b5, a conserved hemoprotein that participates in electron transfer in multiple biochemical reactions and pathways. Viable mutations of dappled cause melanotic nodules and hemocyte misregulation during both hematopoietic waves of development. The sexes are similarly affected, but hemocyte number is different in females and males of both mutants and wild type. Additionally, initial tests show that curcumin enhances the dappled melanotic phenotype and establish screening of endogenous and xenobiotic compounds as a route for analysis of cytochrome b5 function. Overall, dappled provides a tractable genetic model for cytochrome b5, which has been difficult to study in higher organisms

    Cytogenetic analysis of HER1/EGFR, HER2, HER3 and HER4 in 278 breast cancer patients

    Get PDF
    INTRODUCTION: The HER (human EGFR related) family of receptor tyrosine kinases (HER1/EGFR (epidermal growth factor receptor)/c-erbB1, HER2/c-erbB2, HER3/c-erbB3 and HER4/c-erbB4) shares a high degree of structural and functional homology. It constitutes a complex network, coupling various extracellular ligands to intracellular signal transduction pathways resulting in receptor interaction and cross-activation. The most famous family member is HER2, which is a target in Herceptin therapy in metastatic status and also in adjuvant therapy of breast cancer in the event of dysregulation as a result of gene amplification and resulting protein overexpression. The HER2-related HER receptors have been shown to interact directly with HER2 receptors and thereby mutually affect their activity and subsequent malignant growth potential. However, the clinical outcome with regard to total HER receptor state remains largely unknown. METHODS: We investigated HER1-HER4, at both the DNA and the protein level, using fluorescence in situ hybridisation (FISH) probes targeted to all four receptor loci and also immunohistochemistry in tissue microarrays derived from 278 breast cancer patients. RESULTS: We retrospectively found HER3 gene amplification with a univariate negative impact on disease-free survival (hazard ratio 2.35, 95% confidence interval 1.08 to 5.11, p = 0.031), whereas HER4 amplification showed a positive trend in overall and disease-free survival. Protein expression revealed no additional information. CONCLUSION: Overall, the simultaneous quantification of HER3 and HER4 receptor genes by means of FISH might enable the rendering of a more precise stratification of breast cancer patients by providing additional prognostic information. The continuation of explorative and prospective studies on all HER receptors will be required for an evaluation of their potential use for specific therapeutic targeting with respect to individualised therapy
    corecore